
MÉTODOS DE SIMULACIÓN Y

MODELADO

Solución al Trabajo Práctico - Enero de 2026

Ejercicio 1

Lea el art́ıculo citado a continuación, que puede descargar de la página web de la

asignatura, y conteste detalladamente a las preguntas.

Åström, K.J., Elmqvist, H., Mattsson, S.E. Evolution of continuous-time

modeling and simulation. The 12th European Simulation Multiconferen-

ce, ESM’98, June 16–19, 1998, Manchester, UK.

1. ¿Qué analoǵıas pueden establecerse entre el modelado basado en diagramas de

bloques y el paradigma de la simulación analógica?

2. ¿Qué es el paradigma de modelado f́ısico? ¿Qué tipo de modelos matemáticos

se obtienen de aplicar el paradigma del modelado f́ısico?

3. ¿Qué diferencias hay entre el paradigma de la simulación analógica y el para-

digma del modelado f́ısico?

4. Explique detalladamente la Figura 1 basándose en el art́ıculo.



MÉTODOS DE SIMULACIÓN Y MODELADO
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Figura 1: Evolución del modelado y simulación de tiempo continuo.

Solución al Ejercicio 1

En este ejercicio el alumno debe contestar, con sus propias palabras, a las cuestiones

planteadas.
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Ejercicio 2

En la Figura 2 se muestra el diagrama de un sistema compuesto por un depósito

de ĺıquido dotado de un sensor de nivel, una válvula, dos bombas de ĺıquido y un

controlador. El depósito tiene dos salidas de ĺıquido en su base. A una de estas

salidas está conectada una tubeŕıa que desagua un caudal F3 al entorno a través de

una válvula cuya apertura se mantiene fija a un valor constante. A la otra salida está

conectada una bomba que recibe una señal de consigna F2,SP que es una función

conocida del tiempo. Una segunda bomba introduce ĺıquido a través de la parte

superior del depósito. El valor de consigna para el caudal de esta bomba es la señal φ,

generada por el controlador. La entrada hSP al controlador es una función conocida

del tiempo. El área de la base del depósito es el parámetro S.
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Figura 2: Diagrama del sistema.

Suponemos que la densidad del ĺıquido es constante. También, que el caudal a través

de la válvula (F3) es proporcional al nivel de ĺıquido:

F3 =

{

α · h si h > 0

0 en caso contrario
(1.1)

donde α es un parámetro del modelo. El caudal de la bomba que introduce ĺıquido

por la parte superior del depósito es igual a su valor de consigna, que es la señal φ

generada por el controlador:

F1 = φ (1.2)

Mientras haya ĺıquido en el depósito, el caudal F2 de salida de la bomba es igual a

su valor de consigna F2,SP . Sin embargo, si el depósito está vaćıo, el caudal de salida

de la bomba será nulo.

F2 =

{

F2,SP si h > 0

0 en caso contrario
(1.3)
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La variable de entrada al controlador hSP , que representa el valor de consigna para

el nivel de ĺıquido, y la variable F2,SP , que representa el valor de consigna de la

bomba, son funciones conocidas del tiempo, donde A, B, C son parámetros:

hSP =











4.5 m si t ∈ [1200, 1800] ∪ [5000, 6000] s

3 m si t ∈ [2400, 3200] s

0.5 m en cualquier otro caso

(1.4)

F2,SP = A · (sin(B · t) · cos(C · t))2 (1.5)

El controlador calcula el valor de la variable φ, que es el caudal de consigna de

la bomba que introduce ĺıquido en el depósito, siguiendo la estrategia de control PI

muestreado descrita a continuación. Comenzando en el instante T0, cada T segundos

el controlador reevalúa la señal de error (e), la integral de la señal de error (I) y

la variable manipulada (φ) de la forma descrita a continuación, donde kP y kI son

parámetros:

e = hSP − h (1.6)

I = máx (0, pre (I) + T · e) (1.7)

φ = máx

(

0, kP · e+
I

kI

)

(1.8)

A continuación se indica el valor de los parámetros del modelo.

S = 7 m2 T = 6 s T0 = 3 s

kP = 0.2 m2·s−1 kI = 150 s2·m−2 α = 0.15 m2·s−1

A = 0.3 m3·s−1 B = 0.001 s−1 C = 0.002 s−1

En el instante inicial de la simulación (t = 0), el nivel de ĺıquido en el depósito es

h(0) = 2.5 m.

Realice las tareas siguientes:

1. Escriba las ecuaciones del modelo.

2. Asigne la causalidad computacional. Explique detalladamente el procedimiento

seguido para ello.

3. Dibuje el diagrama de flujo del algoritmo para la simulación de este modelo.

Emplee el método de integración de Euler expĺıcito. La condición de finaliza-

ción de la simulación es que el tiempo alcance el valor 7200 s.
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4. Programe el algoritmo anterior en lenguaje R y ejecute la simulación. Explique

detalladamente cómo ha escogido el tamaño del paso de integración. Represen-

te frente al tiempo en una gráfica las variables F1, F2 y F3, y en una segunda

gráfica las variables h y hSP .

Solución al Ejercicio 2

Las ecuaciones del modelo son:

S ·
dh

dt
= F1 − F2 − F3 (1.9)

F1 = φ (1.10)

F2,SP = A · (sin(B · t) · cos(C · t))2 (1.11)

F2 = if h > 0 then F2,SP else 0 (1.12)

F3 = if h > 0 then α · h else 0 (1.13)

hSP = if t ≥ 1200 and t ≤ 1800 or t ≥ 5000 and t ≤ 6000

then 4.5

else if t ≥ 2400 and t ≤ 3200 then 3 else 0.5 (1.14)

when sample(T0, T ) then (1.15)

e = hSP − h

I = máx(0, pre(I) + T · e)

φ = máx(0, kP · e+
I

kI
)

end when

Para asignar la causalidad computacional a la parte de tiempo continuo del modelo,

asumimos que las variables de tiempo discreto (e, I, φ, F1) son conocidas durante

la resolución del problema de tiempo continuo, ya que su valor solo cambia en la

ejecución de los eventos.

Asumiendo que la variable que aparece derivada (h) pueden ser seleccionada como

variable de estado de tiempo continuo, las variables de la parte de tiempo continuo

del modelo pueden clasificarse de la forma siguiente:

– Parámetros y constantes: S, A, B, C, α

– Variable de estado: h

– Variables algebraicas: F2, F3, F2,SP , hSP
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Para asignar la causalidad computacional al modelo, se sustituye la derivada de la

variable de estado de tiempo continuo por una variable muda:

dh

dt
→ derh

Omitiendo las ecuaciones en las que se asigna valor a los parámetros y las constantes,

se obtiene el modelo siguiente:

h Variable de estado

S · derh = F1 − F2 − F3 (1.16)

F2,SP = A · (sin(B · t) · cos(C · t))2 (1.17)

F2 = if h > 0 then F2,SP else 0 (1.18)

F3 = if h > 0 then α · h else 0 (1.19)

hSP = if t ≥ 1200 and t ≤ 1800 or t ≥ 5000 and t ≤ 6000

then 4.5

else if t ≥ 2400 and t ≤ 3200 then 3 else 0.5 (1.20)

Para asignar la causalidad computacional al problema de tiempo continuo, las varia-

bles pueden clasificarse en conocidas (el tiempo, los parámetros, las constantes, las

variables de tiempo discreto y las variables de estado) y desconocidas (las variables

algebraicas y las derivadas de las variables de estado). A continuación se muestra

dicha clasificación.

– Conocidas: t

S, A, B, C, α

F1

h

– Desconocidas: F2, F3, F2,SP , hSP

derh

Con el fin de analizar si el modelo es estructuralmente singular, se comprueba que:

1. El número de ecuaciones y de variables desconocidas (incógnitas) es el mismo.

Este modelo tiene 5 ecuaciones y 5 incógnitas.

2. Cada incógnita puede emparejarse con una ecuación en que aparezca y con la

cual no se haya emparejado ya otra incógnita.
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derh → Ec. (1.16)

F2,SP → Ec. (1.17)

F2 → Ec. (1.18)

F3 → Ec. (1.19)

hSP → Ec. (1.20)

Aplicando el algoritmo de la partición, se obtiene el siguiente modelo ordenado y

resuelto (existen otras posibles formas de ordenar el modelo que son igualmente

válidas), con la causalidad computacional señalada.

h Variable de estado

[hSP ] = if t ≥ 1200 and t ≤ 1800 or t ≥ 5000 and t ≤ 6000

then 4.5

else if t ≥ 2400 and t ≤ 3200 then 3 else 0.5

[F2,SP ] = A · (sin(B · t) · cos(C · t))2

[F2] = if h > 0 then F2,SP else 0

[F3] = if h > 0 then α · h else 0

[derh] =
F1 − F2 − F3

S

En la Figura 3 se muestra el diagrama de flujo para la simulación del modelo, em-

pleando el método de integración de Euler expĺıcito y considerando como condición

de finalización que el tiempo simulado alcance el valor 7200 s.

Se ha seleccionado un tamaño del paso igual a 0.1 s. Para ello, se ha repetido

la simulación empleando diferentes tamaños del paso, encontrándose que el error

cometido escogiendo 0.1 s es admisible para el propósito de este estudio.

Se muestra también el código R que implementa el algoritmo mostrado en la Figu-

ra 3, con un intervalo de comunicación igual al tamaño del paso de integración. En

la Figura 4 se muestran las gráficas obtenida al ejecutar el código R.
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Inicio

0.1,  0t t∆ = =

07,  6,  3,  0.2,  150,  0.15,  0.3,  0.001,  0.002P IS T T k k A B Cα= = = = = = = = =

( ) 00 2.5,  _ 0,  0,  0,  h pre I I e tSample Tφ= = = = = =

( )
[ ] [ ]
[ ]

( ) ( ) ( )( )
( ) ( ) ( ){
( ) ( ) ( ){

2

2,

2,
2

3

4.5  si 1200,1800 5000,6000
3     si 2400,3200
0.5  en otro caso

sin cos
   si 0

0             en otro caso
    si 0

0             en otro caso
if 

SP

SP

SP

t
h t t

F t A B t C t
F t h tF t

h t h tF t

t tSamp

α

 ∈ ∪
= ∈

= ⋅ ⋅ ⋅ ⋅

>=

⋅ >=

≥( ) {
( ) ( )
( )
( )

}
( )

( ) ( ) ( ) ( )( )
1

1 2 3

 
    
   max 0, _
   max 0, /
   _
   

SP

P I

le
e h t h t

I pre I T e
k e I k

pre I I
tSample tSample T

F t
derh t F t F t F t S

φ

φ

= −
= + ⋅
= ⋅ +

=
= +

=
= − −

( ) ( ) ( )h t t h t derh t t+ ∆ = + ⋅ ∆

Fin
Sí

No

7200t ≥

t t t= + ∆

Figura 3: Diagrama de flujo de la simulación del modelo.
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SOLUCIÓN AL TRABAJO PRÁCTICO - ENERO DE 2026

Código R del algoritmo de la simulación

1 rm( list = ls() )

2 tiempoFin <- 7200 # Valor final del tiempo

3 incTiempo <- 0.1 # Paso de integracion

4

5 # Parametros

6 S <- 7

7 T <- 6

8 T_0 <- 3

9 k_P <- 0.2

10 k_I <- 150

11 alfa <- 0.15

12 A <- 0.3

13 B <- 0.001

14 C <- 0.002

15

16 # Vector que contiene los instantes de tiempo simulado

17 tiempo <- seq(0, tiempoFin, by = incTiempo)

18

19 # Inicializacion vectores que almacenan las variables

20 nPoints <- length(tiempo)

21 h <- numeric(nPoints)

22 h_SP <- numeric(nPoints)

23 F_1 <- numeric(nPoints)

24 F_2SP <- numeric(nPoints)

25 F_2 <- numeric(nPoints)

26 F_3 <- numeric(nPoints)

27 derh <- numeric(nPoints)

28

29 # Condicion clausula when

30 tSample <- T_0

31

32 # Valor inicial variable de estado de tiempo continuo

33 h[1] <- 2.5

34

35 # Valor inicial variables de tiempo discreto

36 e <- 0

37 I <- 0

38 phi <- 0

39 pre_I <- 0

40

41 # Bucle de la simulacion

42 for ( nStep in c(1:nPoints) ) {

43

44 if ( ( tiempo[nStep] >= 1200 && tiempo[nStep] <= 1800 ) ||

45 ( tiempo[nStep] >= 5000 && tiempo[nStep] <= 6000 ) ) {

46 h_SP[nStep] <- 4.5

47 } else if ( tiempo[nStep] >= 2400 && tiempo[nStep] <= 3200 ) {

48 h_SP[nStep] <- 3

49 } else {

50 h_SP[nStep] <- 0.5

51 }

52
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53 F_2SP[nStep] <- A*(sin(B*tiempo[nStep])*cos(C*tiempo[nStep]))ˆ2

54

55 if ( h[nStep] > 0 ) {

56 F_2[nStep] <- F_2SP[nStep]

57 } else {

58 F_2[nStep] <- 0;

59 }

60

61 if ( h[nStep] > 0 ) {

62 F_3[nStep] <- alfa * h[nStep]

63 } else {

64 F_3[nStep] <- 0;

65 }

66

67 if ( tiempo[nStep] >= tSample ) {

68 e <- h_SP[nStep] - h[nStep]

69 I <- max( c(0, pre_I + T*e) )

70 phi <- max( c(0, k_P*e + I/k_I) )

71 pre_I <- I

72 tSample <- tSample + T

73 }

74

75 F_1[nStep] <- phi

76 derh[nStep] <- ( F_1[nStep] - F_2[nStep] - F_3[nStep] ) / S

77

78 # Calculo en el siguiente instante de la variable de estado

79 if ( nStep < nPoints ) {

80 h[nStep+1] <- h[nStep] + incTiempo * derh[nStep]

81 }

82

83 } # fin del bucle de la simulacion

84

85 # Representacion grafica

86 dev.new()

87 plot(tiempo, h_SP, xlab = "t [s]", ylab = "[m]",

88 type="l", col="blue", lwd=1.5, ylim=c(0,5),

89 panel.first = abline(v = seq(0,tiempoFin,by=1000),

90 h = seq(0,5,by=0.1),

91 lwd = 0.5, lty = 3, col="grey") )

92 points(tiempo, h, type="l", col="red", lwd=1.5)

93 legend("topright", legend=c("h_SP", "h"),

94 col=c("blue", "red"), lty=c(1,1), cex=0.8)

95

96 dev.new()

97 plot(tiempo, F_1, xlab = "t [s]", ylab = "[m3/s]",

98 type="l", col="blue", lwd=1.5, ylim=c(0,1.4),

99 panel.first = abline(v = seq(0,tiempoFin,by=1000),

100 h = seq(0,1.4,by=0.05),

101 lwd = 0.5, lty = 3, col="grey") )

102 points(tiempo, F_2, type="l", col="red", lwd=1.5)

103 points(tiempo, F_3, type="l", col="darkgreen", lwd=1.5)

104 legend("topright", legend=c("F_1", "F_2", "F_3"),

105 col=c("blue", "red", "darkgreen"), lty=c(1,1,1), cex=0.8)

Código 1: Programación en R del algoritmo de la simulación.
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SOLUCIÓN AL TRABAJO PRÁCTICO - ENERO DE 2026

Figura 4: Resultado de la ejecución del código R.
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Ejercicio 3

Describa en lenguaje Modelica el sistema del ejercicio anterior, de las dos maneras

siguientes:

1. Como un modelo atómico, que viene descrito por las ecuaciones que usted ha

planteado al contestar a la pregunta anterior.

2. Programe una libreŕıa en Modelica que contenga los componentes necesarios

para componer el sistema descrito en el Ejercicio 2. A continuación, defina el

sistema descrito en el Ejercicio 2 como un modelo compuesto, instanciando y

conectando componentes de la libreŕıa que ha programado.

Asigne a los parámetros y a las condiciones iniciales los valores indicados en el

ejercicio anterior.

Simule el modelo atómico y el modelo compuesto en Modelica durante 7200 s y

compruebe que obtiene los mismos resultados.

Represente frente al tiempo las siguientes variables del modelo atómico en Modelica:

en una gráfica las variables F1, F2 y F3, y en una segunda gráfica las variables h

y hSP . Compare estos resultados con los que obtuvo al contestar al Ejercicio 2.4

(ejecución del algoritmo programado en lenguaje R).
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Solución al Ejercicio 3

El modelo atómico en lenguaje Modelica se muestra en Código 2. El resultado de la

simulación está representado en las Figura 5.

En el Código 3 se muestra una posible forma de modelar los componentes, orga-

nizándolos en una libreŕıa, y de componer el sistema mediante dichos componentes.

1 model SistDeposito

2 import Modelica.Units.SI;

3 parameter SI.Area S = 7;

4 parameter SI.Time T = 6;

5 parameter SI.Time T0 = 3;

6 parameter Real kP(unit="m2/s") = 0.2;

7 parameter Real kI(unit="s2/m2") = 150;

8 parameter Real alfa(unit="m2/s") = 0.15;

9 parameter Real A(unit="m3/s") = 0.3;

10 parameter Real B(unit="s-1") = 0.001;

11 parameter Real C(unit="s-1") = 0.002;

12 SI.VolumeFlowRate F1, F2, F3, F2sp;

13 SI.Height h(start=2.5, fixed=true);

14 SI.Height hSP;

15 SI.Length e(start=0, fixed=true);

16 Real I(unit="m.s", start=0, fixed=true);

17 Real phi(unit="1");

18 equation

19 // Balance en el deposito

20 S * der(h) = F1 - F2 - F3;

21 // Bomba superior

22 F1 = phi;

23 // Entradas al controlador

24 hSP = if time >= 1200 and time <= 1800 or

25 time >= 5000 and time <= 6000

26 then 4.5

27 else if time >= 2400 and time <= 3200

28 then 3

29 else 0.5;

30 // Bomba inferior

31 F2sp = A * ( sin(B*time) * cos(C*time) )ˆ2;

32 F2 = if h > 0 then F2sp else 0;

33 // Caudal a traves valvula

34 F3 = if h > 0 then alfa * h else 0;

35 // Controlador

36 when sample(T0, T) then

37 e = hSP - h;

38 I = max(0, pre(I) + T*e);

39 phi = max(0, kP*e + I/kI);

40 end when;

41 end SistDeposito;

Código 2: Modelo atómico en Modelica.
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Figura 5: Resultado de la ejecución del código Modelica.
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1 package SistDepositoLib

2

3 import Modelica.Units.SI;

4

5 package Interfaz

6

7 connector PortLiq

8 SI.Height h;

9 flow SI.VolumeFlowRate F;

10 end PortLiq;

11

12 connector PortSenal

13 Real s;

14 end PortSenal;

15

16 partial model Bomba

17 PortLiq portLiq;

18 PortSenal consigna;

19 end Bomba;

20

21 end Interfaz;

22

23 package Componentes

24

25 model Deposito

26 Interfaz.PortLiq portLiq;

27 Interfaz.PortSenal sensorNivel;

28 parameter SI.Area S;

29 parameter SI.Height h_inicial;

30 SI.Height h(start=h_inicial, fixed=true);

31 equation

32 // Balance en el deposito

33 S * der(h) = portLiq.F;

34 portLiq.h = h;

35 sensorNivel.s = h;

36 end Deposito;

37

38 model Valvula

39 Interfaz.PortLiq portLiq;

40 parameter Real alfa(unit="m2/s");

41 equation

42 portLiq.F = if portLiq.h > 0 then alfa*portLiq.h else 0;

43 end Valvula;

44

45 model BombaInf

46 extends Interfaz.Bomba;

47 equation

48 portLiq.F = if portLiq.h > 0 then consigna.s else 0;

49 end BombaInf;

50

51 model BombaSup

52 extends Interfaz.Bomba;

53 equation
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54 portLiq.F = -consigna.s;

55 end BombaSup;

56

57 model Controlador_PI

58 Interfaz.PortSenal senal_salida;

59 Interfaz.PortSenal senal_nivel;

60 parameter SI.Time T;

61 parameter SI.Time T0;

62 parameter Real kP(unit="m2/s");

63 parameter Real kI(unit="s2/m2");

64 input SI.Height hSP;

65 protected

66 SI.Height h;

67 SI.Length e(start=0, fixed=true);

68 Real I(unit="m.s", start=0, fixed=true);

69 Real phi(unit="1");

70 equation

71 when sample(T0, T) then

72 e = hSP - h;

73 I = max(0, pre(I) + T*e);

74 phi = max(0, kP*e + I/kI);

75 end when;

76 senal_salida.s = phi;

77 senal_nivel.s = h;

78 end Controlador_PI;

79

80 end Componentes;

81

82 model SistemaCompleto

83

84 Componentes.Controlador_PI PI(T=T, T0=T0, kP=kP, kI=kI, hSP=hSP);

85 Componentes.BombaSup BombaSup;

86 Componentes.BombaInf BombaInf;

87 Componentes.Valvula Valvula(alfa=alfa);

88 Componentes.Deposito Deposito(S=S, h_inicial=h_inicial);

89

90 parameter SI.Area S = 7;

91 parameter SI.Time T = 6;

92 parameter SI.Time T0 = 3;

93 parameter Real kP(unit="m2/s") = 0.2;

94 parameter Real kI(unit="s2/m2") = 150;

95 parameter Real alfa(unit="m2/s") = 0.15;

96 parameter Real A(unit="m3/s") = 0.3;

97 parameter Real B(unit="s-1") = 0.001;

98 parameter Real C(unit="s-1") = 0.002;

99 parameter SI.Height h_inicial = 2.5;

100

101 SI.Height hSP;

102

103 equation

104

105 connect(PI.senal_salida, BombaSup.consigna);

106 connect(Deposito.portLiq, BombaSup.portLiq);

107 connect(Deposito.portLiq, BombaInf.portLiq);
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108 connect(Deposito.portLiq, Valvula.portLiq);

109 connect(Deposito.sensorNivel, PI.senal_nivel);

110

111 hSP = if time >= 1200 and time <= 1800 or

112 time >= 5000 and time <= 6000

113 then 4.5

114 else if time >= 2400 and time <= 3200

115 then 3

116 else 0.5;

117 BombaInf.consigna.s = A * ( sin(B*time) * cos(C*time) )ˆ2;

118

119 end SistemaCompleto;

120

121 end SistDepositoLib;

Código 3: Libreŕıa y modelo compuesto en Modelica.
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MÉTODOS DE SIMULACIÓN Y MODELADO

Ejercicio 4

Escriba un script en FlexPDE para determinar el potencial y el campo gravitatorio

existentes entre la Luna y la Tierra. Para realizar el estudio, se consideran sólo dos

dimensiones, tal como se muestra en la Figura 6. En esta figura la Tierra está en

la posición (0, 0) y la Luna está en la posición (0, d), siendo d la distancia entre la

Luna y la Tierra. En el estudio se analiza únicamente el cuadrado de lado 2 · d que

se muestra en la figura.

x

y

-d

-d/2

d

3d/2

d

Figura 6: Sistema Tierra-Luna.

El potencial gravitatorio (U) en un punto (x, y) del sistema de coordenadas de la

figura anterior, donde la Tierra está en la posición (0, 0) y la Luna en la posición

(0, d), es el siguiente:

U = −G ·
mT

√

x2 + y2
−G ·

mL
√

x2 + (y − d)2
(1.21)

Los datos del sistema Tierra-Luna en unidades del sistema internacional (SI) son

los siguientes: distancia Tierra-Luna (d) es 3.84 · 108, la masa de la Tierra (mT )

es 5.98 · 1024, la masa de la Luna (mL) es 7.35 · 1022. La constante de gravitación

universal (G) en unidades del SI tiene el valor 6.67 · 10−11.

Observa que el potencial sólo depende de las coordenadas cartesianas y de paráme-

tros, no existiendo otras variables. Por tanto, el script de FlexPDE solución de

este ejercicio no tiene ni sección VARIABLES ni sección EQUATIONS y tanto los
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parámetros como las ecuaciones del sistema se pueden definir dentro de la sección

DEFINITIONS.

El campo gravitatorio se obtiene aplicando el gradiente. A continuación se muestran

las ecuaciones para obtener las componentes x e y del campo gravitatorio (gx y gy),

aśı como su módulo (gm).

gx = −
∂U

∂x
(1.22)

gy = −
∂U

∂y
(1.23)

gm =
√

g2x + g2y (1.24)

Escriba un script empleando FlexPDE para obtener un mapa de contorno de la

distribución del menos potencial en escala logaŕıtmica y un gráfico vectorial del

campo gravitatorio dividido por el módulo de dicho vector en la región rectangular

bajo estudio. Para mostrar estos dos gráficos, tiene que usar el siguiente código en

FlexPDE, donde U es el potencial gravitatorio, gv es el vector del campo gravitatorio

y gm es el módulo de este vector:

contour(-U) log

vector(gv/gm)
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Solución al Ejercicio 4

El script se muestra en el Código 4. Los gráficos de contorno y vectorial se muestran

en las Figuras 7–8.

1 TITLE 'Campo gravitacional Tierra-Luna'

2 COORDINATES cartesian2

3 SELECT

4 spectral_colors

5 DEFINITIONS

6 d=3.84e8 Lx=d Ly=d

7 mT=5.98e24 mL=7.35e22

8 G=6.67e-11

9 U=-G*mT/sqrt(xˆ2+yˆ2)-G*mL/sqrt(xˆ2+(y-d)ˆ2)

10 gx=-dx(U) gy=-dy(U)

11 gv=vector(gx,gy)

12 gm=sqrt(gxˆ2+gyˆ2)

13 BOUNDARIES

14 REGION 'dominio'

15 START(-Lx,-Ly/2)

16 LINE TO (Lx,-Ly/2) TO (Lx,3/2*Ly) TO (-Lx,3/2*Ly) TO CLOSE

17 PLOTS

18 CONTOUR(-u) log

19 vector(gv/gm)

20 END

Código 4: Modelo descrito en FlexPDE.
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Campo gravitacional Tierra-Luna

gravity:  Grid#0  P2  Nodes=517 Cells=238 RMS Err= 1.
Integral=  1.050764e+24 

13:21:37 2/24/25
FlexPDE Lite 6.51/W64

X
e8

-4. -3. -2. -1. 0. 1. 2. 3. 4.

Y
e8

-2.

-1.

0.

1.

2.

3.

4.

5.

6.
aa bb

c

d

e

e e
f

g
h

i
j

k l

m

n

op

o

x

-u

max  2.701e+8
y :  3.e+8
x :  2.e+8
w :  1.e+8
v :  9.e+7
u :  8.e+7
t :  7.e+7
s :  6.e+7
r :  5.e+7
q :  4.e+7
p :  3.e+7
o :  2.e+7
n :  1.e+7
m :  8999960.
l :  7999990.
k :  7000000.
j :  6000000.
i :  5000010.
h :  3999980.
g :  2999990.
f :  2000010.
e :  1000000.
d :  899996.
c :  799999.
b :  700000.
a :  600000.
min  587614.

Figura 7: Curvas del potencial gravitacional.

Campo gravitacional Tierra-Luna

gravity:  Grid#0  P2  Nodes=517 Cells=238 RMS Err= 1.

13:21:37 2/24/25
FlexPDE Lite 6.51/W64

X
e8

-4. -3. -2. -1. 0. 1. 2. 3. 4.

Y

e8

-2.

-1.

0.

1.

2.

3.

4.

5.

6.
gv/gm

max  1.12
 1.14
 1.11
 1.08
 1.05
 1.02
 0.99
 0.96
 0.93
 0.90
 0.87
 0.84
 0.81
 0.78
 0.75
 0.72
 0.69
 0.66

min  0.66

Figura 8: Vectores del campo gravitacional.
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