METODOS DE SIMULACION Y
MODELADO

Solucién al Trabajo Practico - Enero de 2026

Ejercicio 1

Lea el articulo citado a continuacién, que puede descargar de la pagina web de la

asignatura, y conteste detalladamente a las preguntas.

Astrom, K.J., Elmqvist, H., Mattsson, S.E. Evolution of continuous-time
modeling and simulation. The 12" European Simulation Multiconferen-
ce, ESM’98, June 16-19, 1998, Manchester, UK.

1. ;Qué analogias pueden establecerse entre el modelado basado en diagramas de

bloques y el paradigma de la simulacién analégica?

2. ;Qué es el paradigma de modelado fisico? ;Qué tipo de modelos matematicos

se obtienen de aplicar el paradigma del modelado fisico?

3. ;Qué diferencias hay entre el paradigma de la simulacién analdgica y el para-

digma del modelado fisico?

4. Explique detalladamente la Figura 1 basandose en el articulo.
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Figura 1: Evolucién del modelado y simulacién de tiempo continuo.

Solucién al Ejercicio 1

En este ejercicio el alumno debe contestar, con sus propias palabras, a las cuestiones
planteadas.
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Ejercicio 2

En la Figura 2 se muestra el diagrama de un sistema compuesto por un deposito
de liquido dotado de un sensor de nivel, una valvula, dos bombas de liquido y un
controlador. El depdsito tiene dos salidas de liquido en su base. A una de estas
salidas esta conectada una tuberia que desagua un caudal F3 al entorno a través de
una valvula cuya apertura se mantiene fija a un valor constante. A la otra salida esta
conectada una bomba que recibe una senal de consigna F, gp que es una funcién
conocida del tiempo. Una segunda bomba introduce liquido a través de la parte
superior del depésito. El valor de consigna para el caudal de esta bomba es la senal ¢,
generada por el controlador. La entrada hgp al controlador es una funcién conocida
del tiempo. El area de la base del depdsito es el parametro S.

—————— > Controlador

Figura 2: Diagrama del sistema.

Suponemos que la densidad del liquido es constante. También, que el caudal a través
de la valvula (F3) es proporcional al nivel de liquido:

P = (1.1)

0 en caso contrario

{angh>o

donde « es un parametro del modelo. El caudal de la bomba que introduce liquido
por la parte superior del depdsito es igual a su valor de consigna, que es la senal ¢
generada por el controlador:

Mientras haya liquido en el depdsito, el caudal Fy de salida de la bomba es igual a

su valor de consigna 5 ¢p. Sin embargo, si el depdsito esta vacio, el caudal de salida

de la bomba sera nulo.

0 en caso contrario

F2:{ FQ,SP sih>0 (13)
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La variable de entrada al controlador hgp, que representa el valor de consigna para
el nivel de liquido, y la variable F5 gp, que representa el valor de consigna de la
bomba, son funciones conocidas del tiempo, donde A, B, C' son parametros:

45m si t e [1200,1800] U [5000,6000] s

hsp = 3m si te€[2400,3200] s (1.4)
0.5 m en cualquier otro caso
Fysp = A-(sin(B-t)-cos(C 1)) (1.5)

El controlador calcula el valor de la variable ¢, que es el caudal de consigna de
la bomba que introduce liquido en el depdsito, siguiendo la estrategia de control PI
muestreado descrita a continuacién. Comenzando en el instante Tj, cada T" segundos
el controlador reevalia la senal de error (e), la integral de la senal de error (I) y
la variable manipulada (¢) de la forma descrita a continuacién, donde kp y k; son

parametros:
= hsp—h (1.6)
I = méx(0,pre(I)+ T -e) (1.7)
I
¢ = max (0, kp-e+ k_) (1.8)
1

A continuacion se indica el valor de los parametros del modelo.

S =7m? T=6s To=3s
kp=0.2m?s! k; = 150 s>m~2 a=0.15 m?-s7!
A=03m?s! B =0.001 s7! C =0.002s!

En el instante inicial de la simulacién (¢ = 0), el nivel de liquido en el depdsito es
h(0) = 2.5 m.

Realice las tareas siguientes:

1. Escriba las ecuaciones del modelo.

2. Asigne la causalidad computacional. Explique detalladamente el procedimiento

seguido para ello.

3. Dibuje el diagrama de flujo del algoritmo para la simulaciéon de este modelo.
Emplee el método de integracion de Euler explicito. La condicién de finaliza-

cién de la simulacion es que el tiempo alcance el valor 7200 s.

4 Dpto. de Informatica y Automatica, UNED



SOLUCION AL TRABAJO PRACTICO - ENERO DE 2026

4. Programe el algoritmo anterior en lenguaje R y ejecute la simulacion. Explique
detalladamente como ha escogido el tamano del paso de integracion. Represen-
te frente al tiempo en una grafica las variables Fy, F5 y F3, y en una segunda
grafica las variables h y hgp.

Solucién al Ejercicio 2

Las ecuaciones del modelo son:

S~% = F,— F,— F; (1.9)
o= ¢ (1.10)
Fysp = A-(sin(B-t)-cos(C-t))” (1.11)
F, = if h>0 then F,gp else 0 (1.12)
Fy; = if h>0 then a-h else 0 (1.13)

hgp = if ¢t > 1200 and ¢t <1800 or t > 5000 and t < 6000
then 4.5
else if ¢ > 2400 and ¢ <3200 then 3 else 0.5 (1.14)

when sample(7y, 7') then (1.15)
e = hSP —h
I = méax(0, pre({)+1T -e)
I
¢ = max(0, kp-e+ —)

kr
end when

Para asignar la causalidad computacional a la parte de tiempo continuo del modelo,
asumimos que las variables de tiempo discreto (e, I, ¢, F}) son conocidas durante
la resolucion del problema de tiempo continuo, ya que su valor solo cambia en la
ejecucion de los eventos.

Asumiendo que la variable que aparece derivada (h) pueden ser seleccionada como
variable de estado de tiempo continuo, las variables de la parte de tiempo continuo

del modelo pueden clasificarse de la forma siguiente:

— Parametros y constantes: S, A, B, C, «
— Variable de estado: h
— Variables algebraicas: Fy, Fs, Fy gp, hsp
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Para asignar la causalidad computacional al modelo, se sustituye la derivada de la
variable de estado de tiempo continuo por una variable muda:
dh

m — derh

Omitiendo las ecuaciones en las que se asigna valor a los pardmetros y las constantes,
se obtiene el modelo siguiente:

h Variable de estado
S-derh = F,—F,— I3 ( )
Fysp = A-(sin(B-t)-cos(C -t))” (1.17)
F, = if h>0 then F,gp else 0 ( )
F; = if h>0 then a-h else 0 (1.19)
hgp = if ¢ > 1200 and ¢ <1800 or ¢ > 5000 and t < 6000

then 4.5
else if ¢ > 2400 and ¢t <3200 then 3 else 0.5 (1.20)

Para asignar la causalidad computacional al problema de tiempo continuo, las varia-
bles pueden clasificarse en conocidas (el tiempo, los pardmetros, las constantes, las
variables de tiempo discreto y las variables de estado) y desconocidas (las variables
algebraicas y las derivadas de las variables de estado). A continuacién se muestra
dicha clasificacién.
— Conocidas: t

S, A, B, C,«

F

h

— Desconocidas:  Fy, Fs, F5 gp, hgp
derh

Con el fin de analizar si el modelo es estructuralmente singular, se comprueba que:

1. El nimero de ecuaciones y de variables desconocidas (incégnitas) es el mismo.

Este modelo tiene 5 ecuaciones y 5 incognitas.

2. Cada incégnita puede emparejarse con una ecuacion en que aparezca y con la
cual no se haya emparejado ya otra incognita.
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derh — Ec. (1.16)
Fosp — Ec. (1.17)
F,  — Eec (118)
P, — Eec (1.19)
hsp — Ee. (1.20)

Aplicando el algoritmo de la particién, se obtiene el siguiente modelo ordenado y
resuelto (existen otras posibles formas de ordenar el modelo que son igualmente
vélidas), con la causalidad computacional senialada.

h Variable de estado

lhsp] = if ¢>1200 and ¢t <1800 or ¢ > 5000 and t < 6000
then 4.5
else if ¢t > 2400 and t <3200 then 3 else 0.5

[Fosp] = A-(sin(B-t)-cos(C -t))”

[F5) = if h>0 then Frgp else 0
[F5] = if h>0 then «o-h else 0
F—F,— I3
derh] = —————=
derh] ik

En la Figura 3 se muestra el diagrama de flujo para la simulacién del modelo, em-
pleando el método de integracién de Euler explicito y considerando como condicién

de finalizacién que el tiempo simulado alcance el valor 7200 s.

Se ha seleccionado un tamano del paso igual a 0.1 s. Para ello, se ha repetido
la simulacion empleando diferentes tamanos del paso, encontrandose que el error

cometido escogiendo 0.1 s es admisible para el propésito de este estudio.

Se muestra también el cédigo R que implementa el algoritmo mostrado en la Figu-
ra 3, con un intervalo de comunicacion igual al tamano del paso de integraciéon. En
la Figura 4 se muestran las graficas obtenida al ejecutar el cédigo R.
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At=0.1,t=0
A
S=7,T=6,T,=3 k, =0.2, k, =150, a =0.15, A=0.3, B=0.001, C =0.002
v
h(0)=25, pre_l =1 =0, e=0, =0, tSample=T,

3 s t[]2400,3200

0.5 enotro caso
F,« (1) = Af{sin(B 1) Ceos(C 1))’
Fe(t) sh(t)>0

{4.5 si t 0[1200, 1800]] [ [ 5000, 6000]
he (t) =

E t): 0 en otro caso
— _Ja[h(t) sh(t)>0
t=trAt Fa(t)= 0 Q enotﬁo)caso
if (t=tSample) {
e=hg (t) - h(t)

| =max (0, pre_1 +T [&)
p=max (0,k, &+1/k )
pre_ | =1
tSample=tSample+T

F(t)=¢

derh(t)=(F, (t) - F, (t) - (t))/S

No

h(t +At) =h(t) +derh(t) (At
v

Figura 3: Diagrama de flujo de la simulacién del modelo.
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Cddigo R del algoritmo de la simulacién

rm( list = 1s() )

tiempoFin <- 7200 # Valor final del tiempo
incTiempo <- 0.1 # Paso de integracion
# Parametros

S L= 7

T <- 6

T O <- 3

k_P <- 0.2

k T <— 150

alfa <- 0.15

A <- 0.3

B <- 0.001

C <- 0.002

; # Vector que contiene los instantes de tiempo simulado

tiempo <- seq(0, tiempoFin, by = incTiempo)

# Inicializacion vectores que almacenan las variables
nPoints <- length (tiempo)

h <— numeric (nPoints)
h_SP <— numeric (nPoints)
F_1 <— numeric (nPoints)
F_2SP <— numeric (nPoints)
F_2 <— numeric (nPoints)
; B3 <— numeric (nPoints)
7 derh <— numeric (nPoints)

# Condicion clausula when
tSample <- T_0O

# Valor inicial variable de estado de tiempo continuo
h[l] <- 2.5

5 # Valor inicial variables de tiempo discreto

e <=0
I <=0
phi <—0
pre_1I <- 0

# Bucle de la simulacion
for ( nStep in c(l:nPoints) ) {

if ( ( tiempo[nStep] >= 1200 && tiempo[nStep] <=

h_SP[nStep] <- 4.5

} else if ( tiempo[nStep] >= 2400 && tiempo[nStep]
h_SP[nStep] <- 3

} else {
h_SP[nStep] <- 0.5
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METODOS DE SIMULACION Y MODELADO

F_2SP[nStep] <— Ax(sin(B*xtiempo[nStep]) *cos (Cxtiempo[nStep])) "2

if

( h[nStep] > 0 ) {
F_2[nStep] <- F_2SP[nStep]

} else {

if

F_2[nStep] <- 0;

( h[nStep] > 0 ) {
F_3[nStep] <- alfa x h[nStep]

} else {

F_3[nStep] <- 0;

( tiempo[nStep] >= tSample ) {

e <- h_SP[nStep] - h[nStep]

I <- max( c(0, pre_I + Txe) )
phi <- max( c(0, k_Pxe + I/k_I) )

pre_T <—
tSample <- tSample + T

F_1[nStep] <- phi
derh[nStep] <- ( F_1[nStep] - F_2[nStep] - F_3[nStep] ) / S

# Calculo en el siguiente instante de la variable de estado

if

( nStep < nPoints ) {
h[nStep+l] <- h[nStep] + incTiempo * derh[nStep]

} # fin del bucle de la simulacion

5 # Representacion grafica

s dev.new ()
plot (tiempo, h_SP, xlab = "t [s]", ylab = "[m]",
type="1", col="blue", lwd=1.5, ylim=c(0,5),
panel.first = abline(v = seq(0,tiempoFin,by=1000),
(

S|
h = seqg(0,5,by=0.1),
lwd = 0.5, lty = 3, col="grey") )

points (tiempo, h, type="1", col="red", lwd=1.5)
legend ("topright", legend=c("h_SP", "h"),

col=c ("blue", "red"), lty=c(l,1), cex=0.8)

dev.new ()
plot (tiempo, F_1, xlab = "t [s]", ylab = "[m3/s]",

type="1", col="blue", lwd=1.5, ylim=c(0,1.4),
panel.first = abline(v = seq(0,tiempoFin,by=1000),

h = seq(0,1.4,by=0.05),
lwd = 0.5, lty = 3, col="grey") )

points (tiempo, F_2, type="1", col="red", lwd=1l.5)
points (tiempo, F_3, type="1", col="darkgreen", lwd=1.5)
legend ("topright", legend=c("F_1", "F_2", "F_3"),

col=c ("blue", "red", "darkgreen"), lty=c(l,1,1), cex=0.8)

10

Cddigo 1: Programacién en R del algoritmo de la simulacién.
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Figura 4: Resultado de la ejecucién del cédigo R.
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Ejercicio 3

Describa en lenguaje Modelica el sistema del ejercicio anterior, de las dos maneras

siguientes:

1. Como un modelo atémico, que viene descrito por las ecuaciones que usted ha

planteado al contestar a la pregunta anterior.

2. Programe una libreria en Modelica que contenga los componentes necesarios
para componer el sistema descrito en el Ejercicio 2. A continuacion, defina el
sistema descrito en el Ejercicio 2 como un modelo compuesto, instanciando y

conectando componentes de la libreria que ha programado.

Asigne a los parametros y a las condiciones iniciales los valores indicados en el

ejercicio anterior.

Simule el modelo atémico y el modelo compuesto en Modelica durante 7200 s y
compruebe que obtiene los mismos resultados.

Represente frente al tiempo las siguientes variables del modelo atémico en Modelica:
en una grafica las variables Fy, Fy y F3, y en una segunda grafica las variables h
y hgp. Compare estos resultados con los que obtuvo al contestar al Ejercicio 2.4

(ejecucion del algoritmo programado en lenguaje R).
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Solucién al Ejercicio 3

El modelo atémico en lenguaje Modelica se muestra en Codigo 2. El resultado de la

simulacion esta representado en las Figura 5.

En el Cédigo 3 se muestra una posible forma de modelar los componentes, orga-

nizandolos en una libreria, y de componer el sistema mediante dichos componentes.

1 model SistDeposito

2 import Modelica.Units.SI;
3 parameter SI.Area S

4 parameter SI.Time T

5 parameter SI.Time TO

kP (unit="m2/s")
kI (unit="s2/m2")
alfa (unit="m2/s")
A(unit="m3/s")
B(unit="s-1")
C(unit="s-1")

6 parameter Real
7 parameter Real
8 parameter Real
9 parameter Real
10 parameter Real
11 parameter Real

Ne Ne N
=

o« (Ul N N
~.

O W
o~
=

4

.002;

Il

O O OOk O Wwo J
o N
~

12 SI.VolumeFlowRate F1, F2, F3, F2sp;

13 SI.Height h(start=2.5, fixed=true);

14 SI.Height hSP;

15 SI.Length e(start=0, fixed=true);

16 Real I (unit="m.s", start=0, fixed=true);
17 Real phi (unit="1");

18 equation
19 // Balance en el deposito

20 S x der(h) = F1 - F2 - F3;
21 // Bomba superior
22 F1 = phi;

3 // Entradas al controlador
1

hSP = if time >= 1200 and time <= 1800
25 time >= 5000 and time <= 6000
26 then 4.5
27 else if time >= 2400 and time <=
28 then 3
29 else 0.5;

30 // Bomba inferior

31 F2sp = A * ( sin(Bxtime)
32 F2 = if h > 0 then F2sp else 0;
33 // Caudal a traves valvula

34 F3 = 1f h > 0 then alfa » h else 0;
35 // Controlador

36 when sample (TO, T) then
37 e = hSP - h;
38 I = max (0, pre(I) + Txe);

39 phi = max (0, kPxe + I/kI);
10 end when;

11 end SistDeposito;

* cos (C+xtime)

or

3200

o2k

Cédigo 2: Modelo atémico en Modelica.
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Figura 5: Resultado de la ejecucién del cédigo Modelica.
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package SistDepositolLib
import Modelica.Units.SI;
package Interfaz

connector PortLig
SI.Height hj;
flow SI.VolumeFlowRate F;
end PortLig;

connector PortSenal
Real s;
end PortSenal;

partial model Bomba
PortLiqg portLiqg;
PortSenal consigna;
end Bomba;

end Interfaz;
package Componentes

model Deposito
Interfaz.Portliqg portLig;
Interfaz.PortSenal sensorNivel;
parameter SI.Area S;
parameter SI.Height h_inicialj;
SI.Height h(start=h_inicial, fixed=true);

equation
// Balance en el deposito
S x der(h) = portLiqg.F;
portLiqg.h = h;
sensorNivel.s = h;

end Deposito;

model Valvula

Interfaz.Portliqg portlLiqg;

parameter Real alfa (unit="m2/s");
equation

portLiq.F = if portLig.h > 0 then alfaxportLig.h else 0;
end Valvula;

model Bombalnf

extends Interfaz.Bomba;
equation

portLiq.F = if portLig.h > 0 then consigna.s else 0;
end Bombalnf;

model BombaSup

extends Interfaz.Bomba;
equation

Dpto. de Informatica y Automatica, UNED 15
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portLig.F
end BombaSup;

—consigna.s;

model Controlador_PI
Interfaz.PortSenal senal_salida;
Interfaz.PortSenal senal_nivel;
parameter SI.Time T
parameter SI.Time TO;
parameter Real
parameter Real
input SI.Height hSP;
protected
SI.Height h;

SI.Length e(start=0, fixed=true);

Real I (unit="m.s", start=0,
Real phi (unit="1");
equation
when sample (TO, T) then
e = hSP - h;
I = max(0, pre(I) + Txe);
phi = max (0, kP*xe + I/kI);

end when;

senal_salida.s phi;

senal_nivel.s = h;
end Controlador_PI;

end Componentes;

model SistemaCompleto

kP (unit="m2/s");
kI (unit="s2/m2");

fixed=true) ;

Componentes.Controlador PI PI (T=T, T0=TO0, kP=kP, kI=kI, hSP=hSP);
Componentes.BombaSup BombaSup;
Componentes.BombalInf Bombalnf;
Componentes.Valvula Valvula(alfa=alfa);
Componentes.Deposito Deposito (S=S, h_inicial=h_inicial);
parameter SI.Area S = 7;
parameter SI.Time T = 6;
parameter SI.Time TO = 3;
parameter Real kP (unit="m2/s") = 0.2;
parameter Real kI (unit="s2/m2") = 150;
parameter Real alfa (unit="m2/s") = 0.15;
parameter Real A(unit="m3/s") 0.3;
parameter Real B(unit="s-1") = 0.001;
parameter Real C(unit="s-1") = 0.002;
parameter SI.Height h_inicial = 2.5;
SI.Height hSP;

equation

connect (PI.senal_salida,
connect (Deposito.portlLiq,
connect (Deposito.portlLiq,

16

BombaSup.consigna) ;
BombaSup.portLiq) ;
BombaInf.portLiq) ;
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108 connect (Deposito.portlLiq, Valvula.portLiq);

109 connect (Deposito.sensorNivel, PI.senal_nivel);
110

111 hSP = if time >= 1200 and time <= 1800 or

112 time >= 5000 and time <= 6000

113 then 4.5

114 else if time >= 2400 and time <= 3200

115 then 3

116 else 0.5;

117 BombalInf.consigna.s = A x ( sin(Bxtime) * cos(Cxtime) )"2;
118

119 end SistemaCompleto;

120

121 end SistDepositolib;

Cédigo 3: Libreria y modelo compuesto en Modelica.
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Ejercicio 4

Escriba un script en FlexPDE para determinar el potencial y el campo gravitatorio
existentes entre la Luna y la Tierra. Para realizar el estudio, se consideran sélo dos
dimensiones, tal como se muestra en la Figura 6. En esta figura la Tierra esta en
la posicién (0,0) y la Luna estd en la posicién (0, d), siendo d la distancia entre la
Luna y la Tierra. En el estudio se analiza tinicamente el cuadrado de lado 2 - d que
se muestra en la figura.

A
Y
3d/2
,,,,,,,,,,,,,,,,,,,, (.),,,,,,,,,,,,,,,,,,,,,,,,,
d
-d d
o —
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -d/2

Figura 6: Sistema Tierra-Luna.

El potencial gravitatorio (U) en un punto (z,y) del sistema de coordenadas de la
figura anterior, donde la Tierra esta en la posicién (0,0) y la Luna en la posicién

(0,d), es el siguiente:

mr mpr

G-
Vvt +y? 22 + (y — d)?

U=-G-

(1.21)

Los datos del sistema Tierra-Luna en unidades del sistema internacional (SI) son
los siguientes: distancia Tierra-Luna (d) es 3.84 - 108, la masa de la Tierra (mr)
es 5.98 - 10?4, la masa de la Luna (mp) es 7.35 - 10*2. La constante de gravitacién
universal (G) en unidades del SI tiene el valor 6.67 - 1071

Observa que el potencial sélo depende de las coordenadas cartesianas y de parame-
tros, no existiendo otras variables. Por tanto, el script de FlexPDE solucion de

este ejercicio no tiene ni secciéon VARIABRLES ni secciéon EQUATIONS y tanto los
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parametros como las ecuaciones del sistema se pueden definir dentro de la seccion
DEFINITIONS.

El campo gravitatorio se obtiene aplicando el gradiente. A continuacion se muestran
las ecuaciones para obtener las componentes z e y del campo gravitatorio (g, y gy),

asi como su médulo (g,).

ou

= —— 1.22
ou

= —— 1.23

Escriba un script empleando FlexPDE para obtener un mapa de contorno de la
distribucién del menos potencial en escala logaritmica y un grafico vectorial del
campo gravitatorio dividido por el médulo de dicho vector en la region rectangular
bajo estudio. Para mostrar estos dos graficos, tiene que usar el siguiente codigo en
FlexPDE, donde U es el potencial gravitatorio, gv es el vector del campo gravitatorio

y gm es el médulo de este vector:

contour (-U) log

vector (gv/gm)
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METODOS DE SIMULACION Y MODELADO

Solucién al Ejercicio 4

El script se muestra en el Cédigo 4. Los graficos de contorno y vectorial se muestran

en las Figuras 7-8.

TITLE 'Campo gravitacional Tierra-Luna'
COORDINATES cartesian?2
SELECT
spectral_colors
DEFINITIONS
d=3.84e8 Lx=d Ly=d
mT=5.98e24 mL=7.35e22
G=6.67e-11
U=-GxmT/sqgrt (x"2+y~2) -GxmL/sqrt (x" 2+ (y—-d) "2)
gx=-dx (U) gy=—dy (U)
gv=vector (gx, gy)
gm=sqgrt (gx~2+gy~2)
BOUNDARIES
REGION 'dominio'
START (-Lx, -Ly/2)
LINE TO (Lx,-Ly/2) TO (Lx,3/2+Ly) TO (-Lx,3/2xLy) TO CLOSE

7 PLOTS

CONTOUR (-u) log
vector (gv/gm)
END

Cddigo 4: Modelo descrito en FlexPDE.
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Campo gravitacional Tierra-Luna
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Figura 7: Curvas del potencial gravitacional.
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Figura 8: Vectores del campo gravitacional.
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