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Abstract

Modelica 2 provides new powerful language constructs
for specifying initial conditions. Before any operation
is carried out with a Modelica model, such as
simulation or linearization, initialization takes place to
assign consistent values for all variables, derivatives
and pre-variables present in the model. To obtain
consistent values, the initialization uses all equations
and algorithms that are utilised during the simulation.
Additional constraints necessary to determine the
initial values of all variables can be provided as start
values for any variables as well as additional constraint
equations in initial equation sections. A novel feature is
the possibility to have a sampled controller initialized
in steady state. This tutorial paper describes and
explains the new language constructs and illustrates
how they in combination with Modelica’s other
language elements allow very flexible and powerful
initialization conditions to be defined.

1. Introduction

A dynamic model describes how the states evolve with
time. The states are the memory of the model, for
example in mechanical systems positions and
velocities. When starting a simulation, the states need
to be initialized.

For an ordinary differential equation, ODE, in state
space form, dx/dt = f(x, t), the state variables, x, are
free to be given initial values. However, more
flexibility in specifying initial conditions than setting
state variables is needed. In many cases we would like
to start at steady state implying that the user specifies
dx/dt = 0 as initial condition to get the initial values of
x calculated automatically by solving f(x, t) = 0.
Besides the states, a model has also other variables and
in many cases it is natural to specify initial conditions
in terms of these variables.

In January 2002, Modelica 2 was released [3]. The new
language constructs permit flexible specification of
initial conditions as well as the correct solution of
difficult, non-standard initialization problems occurring
in industrial applications. Modelica 2 provides a
mathematically rigid specification of the initialization
of hybrid differential algebraic equations.

Dymola [1,2] supports the new language constructs of
Modelica 2. Earlier Dymola versions had pure numeric
support for initialization. Experiences from industrial
applications including closed kinematics loops and
thermodynamic problems showed that this was not
sufficient. The numerical solvers were often not able to
solve the large and non-linear problems. Now Dymola
also manipulates symbolically the initialization
problem and generates analytic Jacobians for nonlinear
subproblems. Experience indicates that this approach is
more robust and reliable. Moreover, the special
analysis of the initialization problem allows Dymola to
give diagnosis and user guidance when the
initialization problem turns out not to be well posed.

This paper describes the language constructs to specify
initial conditions and examples for the usage are given.

2. Basics

Before any operation is carried out with a Modelica
model, especially simulation, initialization takes place
to assign consistent values for all variables present in
the model. During this phase, also the derivatives,
der(...), and the pre-variables, pre(...), are interpreted
as unknown algebraic variables. The initialization uses
all equations and algorithms that are utilized during the
simulation.

Additional constraints necessary to determine the
initial values of all variables can be provided in two
ways:

1. Start values for variables
2. Initial equations and initial algorithms

For clarity, we will first focus on the initialization of
continuous time problems because there are some
differences in the interpretation of the start values of
continuous time variables and discrete variables. Also
there are special rules for the usage of when clauses
during initialization. All this makes it simpler to start
discussing pure continuous time problems and after
that discuss discrete and hybrid problems.
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3. Continuous time problems

Initial equations and algorithms

Variables being subtypes of Real have an attribute start
allowing specification of a start value for the variable

Real v(start = 2.0);
parameter Real x0 = 0.5;
Real x(start = x0);

The value for start shall be a parameter expression.

There is also another Boolean attribute fixed to indicate
whether the value of start is a guess value (fixed =
false) to be used in possible iterations to solve
nonlinear algebraic loops or whether the variable is
required to have this value at start (fixed = true). For
constants and parameters, the attribute fixed is by
default true, otherwise fixed is by default false.

For a continuous time variable, the construct
Real x(start = x0, fixed = true);
implies the additional initialization equation

x = x0;

Thus, the problem

parameter Real a = -1, b = 1;

parameter Real x0 = 0.5;

Real x(start = x0, fixed = true);
equation

der (x) = a*x + b;

has the following solution at initialization

a = =-1;

b = 1;

x0 = 0.5;

X = x0; // = 0.5
der (x):= a*x + b; // = 0.5

Initial equations and algorithms

A model may have the new sections initial equation
and initial algorithm with additional equations and
assignments that are used solely in the initialization
phase. The equations and assignments in these initial
sections are viewed as pure algebraic constraints
between the initial values of variables and possibly
their derivatives. It is not allowed to use when clauses
in the initial sections.

Steady state

To specify that a variable x shall start in steady state,
we can write

initial equation
der (x) = 0;

A more advanced example is

parameter Real x0;
parameter Boolean steadyState;
parameter Boolean fixed;
Real x;
initial equation
if steadyState then

der (x) = 0;

else if fixed then
x = x0;

end if;

If the parameter steadyState is true, then x will be
initialized at steady state, because the model specifies
the initialization equation

initial equation
der (x) = 0;

If the parameter steadyState is false, but fixed is true
then there is an initialization equation

initial equation
x = x0;

If both steadyState and fixed are false, then there is no
initial equation.

The approach as outlined above, allows x0 to be any
expression. When x0 is a parameter expression, the
specification above can also be given shorter as

parameter Real x0;
parameter Boolean fixed;
parameter Boolean steadyState;
Real x(start = xO0,

fixed = fixed and

not steadyState) ;
initial equation
if steadyState then
der (x) = 0;

end if;

Mixed Conditions

Due to the flexibility in defining initialization
equations in Modelica 2, it is possible to formulate
more general initial conditions: For example, an
aircraft needs a certain minimum velocity in order that
it can fly. Since this velocity is a state, a useful
initialization scheme is to provide an initial velocity, i.
e., an initial value for a state, and to set all other state
derivatives to zero. This means, that a mixture of initial
states and initial state derivatives is defined.

Modelica 2002, March 18-19, 2002 10
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How many initial conditions?

How many initial conditions are needed for a
continuous time problem?

For an ordinary differential equation, ODE, in state
space form, dx/dt = f(x, t), exactly dim(x) additional
conditions are needed, in order to arrive at 2*dim(x)
equations for the 2*dim(x) unknowns x(t,) and
dx/dt(ty).

The situation is more complex for a system of
differential algebraic equations, DAE,

0=g(dx/dt, x, y, t)

where x(t) are variables appearing differentiated, y(t)
are algebraic variables and dim(g) = dim(x) + dim(y).
Here it can only be stated that ar most dim(x)
additional conditions h(..) are needed in order to arrive
at 2*dim(x)+dim(y) equations for the same number of
unknowns, dx/dt(ty), x(to), y(to):

0 _ |:g(k(l0)5 X(ZO)5 Y(Zo)s t0 ):|
h(x(79), x(Zp), ¥(%9)s to)

The reason is that the DAE problem may be a higher
index DAE problem, implying that the number of
continuous time states is less than dim(x).

It may be difficult for a user of a large model to figure
out how many initial conditions have to be added,
especially if the system has higher index. At translation
Dymola performs an index reduction and selects state
variables. Thus, Dymola establishes how many states
there are. If there are too many initial conditions,
Dymola outputs an error message indicating a set of
initial equations or fixed start values from which initial
equations must be removed or start values inactivated
by setting fixed = false.

If initial conditions are missing, Dymola makes
automatic default selection of initial conditions. The
approach is to select continuous time states with
inactive start values and make their start values active
by turning their fixed attribute to true to get a
structurally well posed initialization problem. A
message informing about the result of such a selection
can be obtained.

Interactive setting of start values

The initial value dialogue of the Dymola main window
has been redesigned. Previously, it included all
continuous time states. Now it includes the continuous
time variables having active start values i.e.,
fixed=true and the start value being a literal. Setting
parameters may of course influence an active start
value bound to a parameter expression.

When setting variables from scripts Dymola generates
a warning if setting the variable has no effect what so
ever, e.g. if it is a structural parameter.

Non-linear algebraic loops

A non-linear algebraic problem may have several
solutions. During simulation a numerical DAE solver
tends to give the smoothest solution. A DAE solver is
assumed to start at a consistent point and its task is to
calculate a new point along the trajectory. By taking a
sufficiently small step and assuming the existence of a
Jacobian that is non-singular there is a local well-
defined solution.

The initialization task is much harder and precautions
must be taken to assure that the correct solution is
obtained. The means to guide the solver include min
and max values as well as start values for the
unknowns.

As a simple example, consider a planar pendulum with
fixed length L.

y

’ X
-

phi L

mg
Figure 1: A planar pendulum.

The position of the pendulum can be given in polar
coordinates. Introduce an angle, phi, that is zero, when
the pendulum is hanging downward in its rest position.
The model can be given as

.81;

I
=P

parameter Real g

parameter Real m

parameter Real L =

Real phi, w;
equation

der (phi) = w;

m*der (w) - (m*g/L) *sin (phi) ;

’
’

Assume now that we want to specify the initial
condition in Cartesian coordinates defined as
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x = L*sin(phi);
y = -L*cos(phi);

If we define

Real y(start = 0; fixed = true);
the pendulum will start in a horizontal position.
However, there are two horizontal positions, namely

x = -L and x = L

To indicate preference for a positive value for x, we
can define

Real x(start = L);

It means that we provide a guess value for numerical
solvers to start from. They will hopefully find the
positive solution for x, because, it is closer to L than
the negative solution.

For the angle phi there are many values giving the
desired position, because adding or subtracting 27
gives the same Cartesian position. Also, here the start
value can be used to indicate the desired solution. How,
critical it is to get a special solution depends of course
on what phi will be used for in the model and the aim
of the simulation. If no start value is given zero is used.

4. Parameter values

Parameters are typically given values in a model
through definition equation or set interactively before a
simulation. Modelica 2 also allows parameter values to
be given implicitly in terms of the initial values of all
variables.

Recall the planar pendulum and assume that we would
like to specify the initial position as

Real x(start =

3; fixed = true);
Real y(start = 4

0.
0.4; fixed = true);

This means that we in fact also specify the length of the
pendulum to be 0.5. To specify that the parameter L
shall be calculated from the initial conditions, we
define it as

parameter Real L(fixed = false);

Recall that the attribute fixed is by default true for
constants and parameters, otherwise fixed is by default
false.

The semantics of parameters in Modelica is a variable
that is constant during simulation. The possibility to let
the parameter value to depend on the initial values of

time dependent (continuous-time or discrete) variables
does not violate this semantics.

This feature has many useful applications. It allows
powerful reparametrizations of models. As an example,
consider the model of an ideal resistor. It has one
parameter, R, being the resistance. Assume that we
would like to have use it as a resistive load with a
given power dissipation at a steady state operating
point. It is just to extend from the resistor model given
in the Modelica Standard Library and

1. Add a parameter PO to specify the power
dissipation.

2. Set fixed=false for parameter R.

3. Add an initial equation section with v*i = P(.

In power systems, it is common practice to specify
initial conditions in steady state and use different kind
of load models including resistive load and specify
their steady state operating conditions in terms of
active and reactive power dissipation.

In some cases parameters may be provided outside of a
Modelica model and the actual values may be read
from file or parameter values may be inquired from a
database system during initialization:

parameter Real A (fixed=false);
parameter Real w(fixed=false);
Real x;
initial equation
(A,w) = readSineData ("init.txt");
equation
der (x) = -A*sin (w*x);

S. Discrete and hybrid problems

The language constructs for specifying initial
conditions for discrete variables are as for the
continuous time variables: start values and initial
equations and algorithms.

Variables being subtypes of Real, Integer, Boolean and
String have an attribute start allowing specification of a

start value for the variable.

For discrete variables declarations

fixed = true);
fixed = true);

Boolean b(start = false,
Integer 1i(start = 1,

imply the additional initialization equations

= false;
1;

pre (b)
pre (i)

Modelica 2002, March 18-19, 2002 12
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This means that a discrete variable v itself does not get
an initial value (= v(ty+€)), but the pre-value of v (=
v(to- €)) does.

When clauses at initialization

For the initialization problem there are special semantic
rules for when clauses appearing in the model. During
simulation a when clause is only active when its
condition becomes true. During initialization the
equations of a when clause are only active during
initialization, if the initial() operator explicitly enables
it.

when {initial(),
v o= .
end when;

conditionl, ..} then

Otherwise a when clause is in the initialization
problem replaced by v = pre(v) for all its left hand side
variables, because this is also the used equation during
simulation, when the when-clause is not active.

Non-unique initialization

In certain situations an initialization problem may have
an infinite number of solutions, even if the number of
equations and unknown variables are the same during
initialization. Examples are controlled systems with
friction, or systems with backlash or dead-zones.
Assume for example backlash is present. Then, all
valid positions in this element are solutions of steady
state initialization, although this position should be
computed from initialization. It seems best to not rely
on some heuristics of the initializer to pick one of the
infinite number of solutions. Instead, the continuous
time equations may be modified during initialization in
order to arrive at a unique solution. Example:

y = if initial() then
// smooth characteristics
else
// standard characteristics

Well-posed initialization

At translation Dymola analyses the initialization
problem to check if it is well posed by splitting the
problem into four equation types with respect to the
basic scalar types Real, Integer, Boolean and String
and decides whether each of them are well-posed.

As described for the pure continuous-time problem,
Dymola outputs error diagnosis in case of over
specified problems. In case of under specified
problems Dymola makes automatic default selection of
initial conditions.

How many initial conditions?

Basically, this is very simple: Every discrete variable v
needs an initial condition, because v(to- €) is otherwise
not defined. Example:

parameter Real tl = 1;
discrete Real u(start=0, fixed=true);
Real x(start=0, fixed=true);

equation
when time > tl then
u =
end when;
der(x) = -x + u;

During initialization and before the when-clause
becomes active the first time, u has not yet been
assigned a value by the when-clause although it is used
in the continuous part of the model. Therefore, it would
be an error, if pre(u) would not have been defined via
the start value in the u declaration.

On the other hand, if u is used solely inside this when-
clause and pre(u) is not utilized in the model, an initial
value for u may be provided but does not influence the
simulation, because the first access of u computes u in
the when-clause and afterwards u is utilized in other
equations inside the when-clause, i. ., the initial value
is never used.

Since it may be tedious for a modeller to provide initial
values for all discrete variables, Modelica 2 only
requires to specify initial values of discrete variables
which influence the simulation result. Otherwise, a
default value may be used.

6. Example: Initialization of
discrete controllers

Below four variants to inialize a simple plant
controlled by a discrete PI controller are discussed.

Variant 1: Initial values are given explicitly

parameter Real k=10, T=1;

// PI controller parameters.
parameter Real Ts = 0.01 "Sample time";
input Real xref "reference input";

Real x (fixed=true, start=2);
discrete Real xd(fixed=true, start=0);
discrete Real u (fixed=true, start=0);

equation
// Plant model
der (x) = -x + u;

// Discrete PI controller

when sample (0, Ts) then
xd = pre(xd) + Ts/T* (xref - x);
u = k*(xd + xref - x);

end when;

The Modelica Association 13
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The model specifies all the initial values for the states
explicitly. The when clause is not enabled at
initialization but it is replaced by

xd 1= pre (xd)
u 1= pre(u)

The initialization problem is thus

X = x.start // =2
pre(xd) := xd.start // =0
pre (u) := u.start // =0
xd := pre(xd) // =0
u = pre (u) // =0
der (x) = -x + u // = =2

Variant 2: Initial values are given explicitly and the
controller equations are used during initialization. It is
as Variant 1, but the when clause is enabled

// Same declaration as variant 1
equation
der (x) = -x + u;

when {|linitial ()|, sample(0,Ts)} then

xd = pre(xd) + Ts/T* (xref - x);
u = k*(xd + xref - x);
end when;

It means that the when clause appears as

xd = pre(xd) + Ts/T* (xref - x);
u k*(xd + xref - x);

in the initialization problem, which becomes

X := x.start // = 2

pre (xd) := xd.start // = 0

pre(u) := u.start // =0

xd := pre(xd) + Ts/T* (xref - X);
u := k*(xd + xref - x);

der (x) := -x + u;

Variant 3: As Variant 2 but initial conditions defined
by initial equations

discrete Real xd;

discrete Real u;
// Remaining declarations as in variant 1
equation

der (x) = -x + u;

when {initial(), sample(0, TS)} then
xd = pre(xd) + Ts/T* (xref - x);
u = k*¥(xd + xref - x);

end when;

initial equation
pre (xd) = 0;
pre(u) = 0;

leads to the following equations during initialization

x := x.start // =2
pre(xd) := 0
0

pre(u) :=

xd := pre(xd) + Ts/T*(xref - x)
u := k*¥(xd + xref - x)
der (x) = -x + u;

Variant 4: Steady state initialization

Assume that the system is to start in steady state. For
continuous time state, X, it means that its derivative
shall be zero; der(x) =0; While for the discrete state,
xd, it means pre(xd) = xd; and the when clause shall be
active during initialization

Real X (start=2);

discrete Real xd;

discrete Real u;
// Remaining declarations as in Variant 1
equation

// Plant model

der (x) = -x + u;

// Discrete PID controller
when {initial(), sample(0, Ts)} then
xd = pre(xd) + Ts/T*(x - xref);
u = k*(xd + x - xref);
end when;

initial equation
der(x) = 0;
pre (xd) = xd;

The initialization problem becomes
der (x) := 0
// Linear system of equations in the

// unknowns: xd, pre(xd), u, x
pre(xd) = xd

xd = pre(xd) + Ts/T*(x - xref)
u = k*(xd + xref - Xx)
der (x) = -x + u;

Solving the system of equations leads to

der (x) =0

b4 1= xref

u 1= xref
xd := xref/k
pre(xd) := xd

7. Conclusions

This paper has described and illustrated how the new
language constructs of Modelica 2 in combination with
Modelica's other language elements allow very flexible
and powerful initialization conditions to be defined.

Dymola supports Modelica's new way of specifying
initial conditions. To support reliable and robust
initialization, Dymola manipulates symbolically the
initialization problem and generates analytic Jacobians
for nonlinear subproblems. Moreover, the special
analysis of the initialization problem allows Dymola to
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give diagnosis and user guidance when the
initialization problem turns out not to be well posed.
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