
�����������	

�����
���������	�
���������������
����������������	�����	��������������������������
����������������

���������
�����������������������������	�����	�������������������������� ���!!��
"�#�
���
�$����#%��&��'#����#���(�#%��������)��*"'(+���,����������������-��%��.�

/		������
�������
�0��1
��������,����0�	���������%
������������	
�����	����	�������������������������

��	������	�������
�� ������� ������� "�#�
���
� $����#%� �&�� '#���� #��� (�#%������ ��)�� *"'(+�� ��
���#�� �&�

(�,���1� #��� ����������1�� �,���������������� -��%��.� *�����%��� ��� ���� ������%
��%%�����+�

�� �	�����2	%34�
���".��
�%�/5��'#����60�����
�� ������ 7���8
���� �2'/5�� "�����%���� ��� ��%�#���� ���� �����%������ 6�������� '��19����

:��4��
��.��60�����

�	����	���������
��������������/
�����;�
����
1�������
�����6��0�������2��1��<��		����;������5�	
�
"�#�
���
�$����#%��&��'#����#���(�#%��������)��*"'(+����
���#���&��(�,���1�#��
����������1���,����������������-��%��.

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 1 Modelica 2002, March 18−19, 2002

New Features in Modelica 2.0

Martin Otter1 and Hans Olsson2

1DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de
2Dynasim AB, Lund, Sweden, Hans.Olsson@dynasim.se

Abstract
The second major release of Modelica was finished
and formally approved at the last Modelica design
meeting, January 2002, Lund, Sweden. In this
paper, the new features of Modelica 2.0 are
described.

1. Introduction
The freely available, object-oriented modeling
language Modelica is developed continuously
since 1996. Modelica is designed to allow
effective, component-oriented modeling of
complex engineering systems described by
differential, algebraic and discrete equations, e.g.,
systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. A large num-
ber of free and commercial libraries of fundamen-
tal models are available as well as commercial
Modelica simulation environments. More in-
formation is provided at http://www.Modelica.org/.

In 1997, the first major version of Modelica was
released, followed by four minor revisions released
once a year. The second major release of Modelica
was completed and formally approved at the last
Modelica design meeting, January 2002, Lund,
Sweden. The most important design goal was to
enhance the development and use of application
libraries, incorporating the experience and feedback
of library developers, while keeping backward
compatibility. A number of language enhancements
have been added, significantly facilitating library
development and use. In this paper, the new features
of Modelica 2.0 are described. The following
members of the Modelica Association have
contributed to the development of Modelica 2:

P. Aronsson, Linköping University, Sweden.
B. Bachmann , University of Bielefeld, Germany.
P. Beater, University of Paderborn, Germany
D. Brück, Dynasim, Lund, Sweden
P. Bunus, Linköping University, Sweden
H. Elmqvist, Dynasim, Lund, Sweden
V. Engelson, Linköping University, Sweden
P. Fritzson, Linköping University, Sweden
R. Franke, ABB Corporate Research, Ladenburg

P. Grozman, Equa, Stockholm, Sweden
J. Gunnarsson, MathCore, Linköping
M. Jirstrand, MathCore, Linköping
S. E. Mattsson, Dynasim, Lund, Sweden
H. Olsson, Dynasim, Lund, Sweden
M. Otter, DLR, Oberpfaffenhofen, Germany
L. Saldamli, Linköping University, Sweden
M. Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
H. Tummescheit, Lund Institute of Technology, Sweden
H.-J. Wiesmann, ABB Corp. Res., Baden, Switzerland

2. Component Arrays
One part of the redesign of Modelica 2 was based
on the experience with the Modelica.Blocks library
in Modelica 1. The redesign supports generic
formulation of blocks applicable to both scalar and
vector connectors, connection of (automatically)
vectorized blocks, and simpler input/output
connectors. This allows significant simplifications
of the input/output block library of Modelica, e.g.,
since only scalar versions of blocks that naturally
vectorize have to be provided. Furthermore, new
library components can be incorporated more
easily. In addition, it is possible to use functions
and functional blocks allowing, e.g., the sin-
function to be inserted in a block diagram.

Since the first release, it was possible in Modelica
to define homogenous component arrays, i.e.,
arrays where the array elements are instances of
any desired class, for example:

 Resistor R[10];

is an array of 10 resistors including both the
resistor parameters and the resistor equations. In
Modelica 2, features have been added for
component arrays to widen their applicability.

Component Array Modifications
Assume a component is defined as

model FixedFrame
parameter Real r[3] = {0,0,0};
parameter Real alpha = 0;
parameter Real beta = 0;
parameter Real gamma = 0;

 ...

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 2 The Modelica Association

end FixedFrame;

which describes a coordinate system with respect
to another one as fixed translation with vector r
and fixed rotation around angles α, β, γ along x-,
y-, and z-axis respectively. A part may have
several frames and also other properties and can be
defined as

 model Part
parameter Integer n=0;

 FixedFrame frames[n];
 ...

end Part;

There are different possibilities to define a part
which has several frames:

Part p(n=2, frames[1](r={1,0,0},
 alpha = 1),
 frames[2].alpha = -1);

Here, every element of the frame vector is
explicitly modified. Another alternative is

 Part p(n=4,frames(beta={1,2,3,4},
 r = fill(1,4,3)));

where the same parameter of all frames are
modified. For example, frames[:].beta is treated as
a vector of 4 elements and therefore a vector of 4
elements has to be provided as modification. On
the other hand, frames[:].r is treated as a (4,3)
matrix.

 Part p(n=10, frames(each r={1,0,0});

defines 10 frames, using the same vector r for all
frames. In a similar way also nested component
arrays are handled:

 Part p[10](each n=3,
each frames(each beta=1);

Here, 10 parts are declared, where every part has 3
identical frames with beta=1. In this application it
is not very useful to define so many identical
frames. However, in lumped models deduced from
the discretisation of partial differential equations,
often many elements of a component array have
the same value. Example:

parameter Integer n;
parameter Real L=1 "length";
parameter Real r=1 "resistance

 per meter";
protected

parameter Real Re=r*L/n;
 Resistor R[n+1](R =

vector([Re/2;
fill(Re,n-1);

 Re/2]));

All elements of the resistance vector R are the
same, with the exception of the first and last one
which each take half of the value of an element
Resistance Re.

Block Vectorization
Connectors of signals of the Modelica.Blocks
library are in Modelica 1.4 defined as

 connector InPort
parameter Integer n=1;
input Real signal[n];

end InPort;

That is, the connector consists of a vector of Reals
which are used as input signals. Such a connector
is utilized in an input/output block as:

 block FirstOrder
parameter Real T=1 "time const.";

 InPort inPort;
 OutPort outPort;
 ...
 end FirstOrder;

Accessing the input signal of such a block is
inconvenient:

FirstOrder b;
 ...
 b.inPort.signal[1] // input signal

In Modelica 2 it is possible to define a connector as
an extension from the base types, i.e., the
following definition is possible:

 connector InPortNew = input Real;

Also annotations for the graphical layout of icon
and diagram layer of such a connector can be
defined. Therefore, this connector may be dragged
from a library window in a model window to
construct a new model graphically. In a model, this
connector is used as:

 block FirstOrderNew
parameter Real T=1 "time const.";

 InPortNew u;
 OutPortNew y;
 ...
 end FirstOrderNew;

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 3 Modelica 2002, March 18−19, 2002

Accessing the input signal of this block is now
much simpler:

FirstOrderNew b;
 ...
 b.u // input signal

In the 1.4 version of the Modelica.Blocks library,
most blocks are manually vectorized, e.g., to
define an instance which has 10 input and 10
output signals and 10 first order blocks for every
signal path. This complicates the class definitions
in Modelica.Blocks considerably, and in all cases,
except Sources.KinemanticPTP, a vectorized block
behaves as a vector of scalar blocks. With the
extensions described above, this is much simpler.
For example, a scalar Sine block may be defined
as:

 block Sine
import Modelica.Math.*;
import.Modelica.Constants.*;
parameter Real Amplitude =1;
parameter Real frequency =1;
parameter Real phase=0;

 InPortNew u;
 OutPortNew y;

equation
 y = Amplitude*
 sin(2*pi*frequency*time+phase);
 end FirstOrderNew;

This looks like a text-book example of a sine
source. Using 3 Sine sources is now performed by
component arrays:

Sine s[3](each frequency=50,
 phase = {0,2,-2});

Note, that it is easy to define that all sine-sources
shall have the same frequency, but different phases
roughly corresponding to 3 electrical phases. A
state space model may be defined as:

 block StateSpace
final parameter Integer nx =

size(A,1);
final parameter Integer nu =

size(B,2);
final parameter Integer ny =

size(C,1);
 parameter Real A[: ,nx];
 parameter Real B[nx, :];

parameter Real C[: ,nx];
parameter Real D[ny,nu];

 InPortNew u[nu];
 OutPortNew y[ny];

 Real x[nx]
equation

 der(x) = A*x + B*u;
 y = C*x + D*u;

end StateSpace;

Connecting the 3 sin-sources as input to an
instance of StateSpace which has three inputs can
be performed in the following way:

 Sine s[3](each frequency=50,
 phase = {0,2,-2});
 StateSpace b(B=[0,0,1;...],...);

equation
connect(s.y, b.u);

This is a connection of s[:].y with b.u[:]. This is
allowed due to a new connection rule, provided the
dimension sizes match, which is the case here.

3. Enumeration Types
Modelica 2 introduces enumerations to construct
new base types which consist of countable sets of
elements. Example:

 type TextStyle = enumeration(
 Bold, Italic, UnderLine);

This declaration defines a new type TextStyle. An
instance of this type may have only the values
TextStyle.Bold, TextStyle.Italic or
TextStyle.UnderLine. Such a type can be used in
the following way:

TextStyle t1 = TextStyle.Bold;
 TextStyle t2 = t1;

Currently, the only operations defined for
enumeration types are the equal ("=") and the
assignment (":=") operations. Furthermore, the
relational operators <, <=, >, >=, ==, <> can be
applied. The result depends on the order of the
element in the enumeration declaration. For
example TextStyle.Bold < TextStyle.Italic. It is
planned to provide more operations in future
Modelica releases, e.g., to access array indices by
enumerations or inquire the next or previous
enumeration element.

Enumerations are useful for defining properties
and options in an understandable and safe way.
Since enumerations are internally mapped to an
Integer type, processing them is safer and much
more efficient than if properties or options would
be defined as Strings. Compared to using Integer
constants it is clearer, requires less typing, and is

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 4 The Modelica Association

safer since each enumeration is a separate type. In
Modelica 2, several enumeration types are
predefined, such as StateSelect (see next section)
and enumerations in graphical annotations.

4. State Selection Control
The continuous part of a Modelica model is
mapped to a DAE, a differential-algebraic equation
system, of the form

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated
and y(t) are pure algebraic variables. Conceptually,
this DAE is transformed in to state space form

 dxs/dt = f1(xs, t)
xn = f2(xs,t)
y = f3(xs,t)

where xs(t) are a subset of x which are independent
from each other and xn(t) are the other variables of
x. Variables xs(t) are called states of the model. A
numerical integration method essentially
discretizes xs over time, whereas all other variables
are calculated as the solution of an algebraic
system of equations at the actual time instant. The
selection of xs is not unique. Different choices may
lead to drastically different numerical behaviour. A
dynamic automatic selection of xs by a tool is
always possible, [4]. However, experience shows
that user insight may lead to better choices or
avoid the need for dynamic selection. On the other
hand automatic selection is an efficient and reliable
method, and users should not be forced to
manually perform a complete manual state
selection merely because dynamic state selection
might be inefficient for some models. For this
reason, in Modelica 2 it is possible to guide the
state selection via the new attribute stateSelect of
Real variables. The attribute has values from the
enumeration StateSelect defined as:

 type StateSelect = enumeration(
 never, avoid, default,
 prefer, always);

For "never", a variable will never be selected as a
state, whereas for "always" the variable shall
always be used as a state. For "default", which is
the default for all Real variables, the states are
automatically selected among the variables which
appear differentiated. If "prefer" is used, the
variable need not to be differentiated and is

preferably used as state over those having the
default value. Finally, for "avoid", the variable is
only selected as a state, if it appears differentiated
and if no other selection of variables with
"default", "prefer", or "always" value is possible. A
state preference definition may be given in the
following way:

 Real w(stateSelect =
 StateSelect.prefer);

Examples for appropriate state selection (from [2]):

Accuracy:
In rotating machinery systems used for power
transmission (but not for positioning drive
systems) and in power systems, angular positions
of shafts are increasing with time, but relative
positions between shafts are rather constant, at
least in normal operation. Say that two rotating
inertias are connected by a spring such that the
relative distance between them are 0.1 rad and that
their angular speed is 1000 rad/s. If the positions
are calculated with a relative accuracy of 0.001,
after 10 seconds there is hardly any accuracy in
calculating the distance by taking the difference.
The difference behaves irregularly and gives an
irregular torque if simulations take too long. It is
very difficult for a tool to find this out without
actually doing simulation runs. Therefore, it is
useful to define StateSelect.prefer for all relative
variables in force elements (e.g., spring, damper,
clutch). This will be performed in the next version
of the Modelica.Mechanics.Rotational library.

Avoiding function inversion:
In thermodynamic problems property functions are
utilized. These functions usually assume two
variables to be inputs (for example pressure and
enthalpy) and calculate other properties (such as
temperature, density). Thus, if such variables are
selected as state variables it is "simply" calling
property functions to calculate other needed
variables. Otherwise, it is necessary to solve non-
linear equation systems to calculate the input
variables of the property functions. Therefore, a
good choice is to use StateSelect.prefer on all
input variables of property functions, or use
StateSelect.avoid on output variables from
property functions.

Less nonlinear equations:
For three-phase power systems several choices of
states are possible, especially selecting states from
the stator side or from the rotor side. The first

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 5 Modelica 2002, March 18−19, 2002

choice leads to a non-linear DAE, whereas the
second one leads (under certain assumptions) to a
linear DAE. In a periodic steady state, the first
choice results in a periodic solution of the states
whereas in the second choice the states are
identical to zero. As a result, selecting states from
the rotor side (= Park transformation) leads to a
more efficient and more reliable numerical solution
and therefore these variables should have the
attribute value StateSelect.prefer.

Avoid dynamic state selection:
For 3-dimensional mechanical systems having
closed kinematic loops, an automatic static
selection of states is not possible. Instead, the
states have to be dynamically selected and changed
during simulation in order to keep the (time-
varying) Jacobian of the system non-singular. In
many cases a suitable set of state variables is
known, e.g., the relative position and velocity
variables of the joints driving the mechanism. If
these variables have attribute value
StateSelect.always the simulation is more efficient
which is especially important for real-time
simulations.

Sensors:
A sensor may measure the speed "v" of a
translational connector. Since the speed is not part
of the connector, but the position "s" is, an
equation of the form "der(s) = v" is present in the
sensor, i.e., "s" appears differentiated and can be
potentially used as a state. However, in most case
the selection of "s" as a state is not appropriate,
since introduction of a variable for just plotting
should not influence the state selection. Therefore,
an attribute value of StateSelect.avoid should be
preferably used for differentiated variables in
sensor objects (here: "s").

The general advice is that selection of states ought
to be done automatically. This is also possible and
unproblematic in most models. Only if there are
good reasons, as pointed out above at hand of
several examples, the modeler may give hints for
state selection. Note, that in a library the values
StateSelect.never or StateSelect.always should
not be used, because a library has usually not
enough information to rigidly force a state
selection.

5. Improved Initialization
Modelica 2.0 introduces a mathematically rigid
specification of the initialization of Modelica

models, i.e., of hybrid differential algebraic
equations. The new language constructs permit
flexible specification of initial conditions as well
as the correct solution of difficult, non-standard
initialization problems occurring in industrial
applications, for example:
• Stationary initialization around a constant

reference velocity of an aircraft.
• Stationary initialization around periodic

solutions, needed in power systems or in
detailed engine models.

• Stationary initialization of continuous systems
controlled by sampled data systems (the states
of the discrete controllers are computed in such
a way that the overall system is in a steady
state when simulation starts).

• Initialization of discontinuous or variable
structure systems, e.g., systems containing
friction or backlash.

Since this is a large topic by itself, only a short
overview is given here. Details are presented in the
companion paper [3].

Before any operation, in particular simulation, is
carried out with a Modelica model, initialization
takes place to assign consistent values for all
variables present in the model, including
derivatives, der(…), and pre-variables, pre(…).
The initialization uses all equations and algorithms
that are utilized during the simulation.

In the most simplest case, when only continuous
equations are present without algebraic
dependencies of states (= no higher DAE index), a
Modelica model is mapped to the following
differential-algebraic equation system (DAE):

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated,
y(t) are algebraic variables and dim(f) = dim(x) +
dim(y). These equations have to be fulfilled at all
time instants, especially also at the initial time t0.
During simulation, an integrator calls the model
providing basically x as input. Therefore, the
model equations are solved under the assumption
that x is known. During initialization, x is,
however, unknown. As a result, there are only
dim(x) + dim(y) equations for 2*dim(x) + dim(y)
unknowns during initialization. In the most general
case this means that the modeler has to provide
additionally dim(x) equations g(..) at the initial
time resulting in the following system of equations

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 6 The Modelica Association

=

)t,y,x,xg

)t,y,x,xf
0

0000

0000

)()()((

)()()((

ttt

ttt

�

�

which has to be solved for the unknowns dx/dt(t0),
x(t0), y(t0). In general this means that the standard
algorithms, such as BLT transformation, should be
applied to this system, in order to compute the
solution reliably and efficiently. From a user's
point of view this procedure means that dim(x)
equations have to be additionally provided for the
initial time, e.g., x(t0) = x0 or dx/dt(t0) = 0. In
Modelica 2 these initial equations can either be
defined in the new initial equation / initial
algorithm sections or as start value with attribute
fixed = true. For example two initial equations
x1(t0) = 1 and dx2/dt(t0) = 0 may be defined as:

Real x1(start=1, fixed=true);
 Real x2 //default: fixed=false
 initial equation
 der(x2) = 0;
 equation
 der(x1) = -x1 + x2;
 der(x2) = -x2;

If there are constraints between states, the number
of initial equations to be provided is less than
dim(x). It may be difficult for a user of a large
model to figure out how many initial equations
have to be added. Therefore, it is essential that a
Modelica environment has appropriate support. For
example, Dymola performs index reduction and
selects state variables for the simulation model [1],
[3], [4]. Thus, it establishes how many states there
are and how many initial conditions have to be
additionally provided. If there are too many initial
equations, Dymola outputs an error message
indicating a set of initial equations or fixed start
values from which initial equations must be
removed or start values inactivated by setting fixed
= false. If initial conditions are missing, Dymola
makes automatic default selection of initial
conditions. The approach is to select continuous
time states with inactive start values and make
their start values active by turning their fixed
attribute to true to get a structurally well posed
initialization problem. A message informing about
the result of such a selection can be obtained.

6. Function Applications
In Modelica 1.4, a function application can have
either positional or named input arguments. In
Modelica 2, a function application may have
optional positional input arguments followed by

zero, one or more named input arguments.
Arguments not explicitly present get the default
value supplied in the function declaration. This
feature is useful to make the same function fit for
beginners and expert users. For example, a
function RealToString may be defined as follows
to convert a Real number into a String
representation:

 function RealToString
input Real number;
input Real precision = 6;
input Real minLength = 0;
output String string;

 algorithm
 ...
 end RealToString;

Argument "number" is the number to be converted,
"precision" is the number of significant digits in
the String representation and "minLength" is the
minimum length of the String in which the number
is stored right justified. Since positional, named
and default arguments are allowed, the following
function applications are equivalent:

RealToString(2.0);
RealToString(2.0, 6, 0);
RealToString(2.0, 6);
RealToString(2.0, precision=6);
RealToString(2.0, minLength=0);

Note, that the following call leads to an error

RealToString(2.0, 6, precision=4);

since argument 2 is defined twice. This function
may be used to conveniently build up a message
string, such as

 Variable "mass" (= -10.4562) shall
 be non-negative.

via the function call

assert(v>=0,"Variable \"mass\" (="
 + RealToString(v) + " shall be "
 + "non-negative.\n"

As before, only positional output arguments of a
function application are possible. However, output
arguments shall be omitted, if the corresponding
variables has attribute enable=false in the function
declaration. This makes it possible to avoid
dummy output arguments in the function
application which are not used in the calling
function. For example, a function to compute
eigenvalues and optionally right and left
eigenvectors may be defined in Modelica as:

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 7 Modelica 2002, March 18−19, 2002

function eigen
parameter Integer n = size(A,1);
input Real A[:,n];
input Boolean getREV = false;
input Boolean getLEV = false;
output Real eigenValues[n,2];
output Real REV[n,n](enable=getREV);
output Real LEV[n,n](enable=getLEV);

algorithm
 // compute eigenvalues
if getREV then

 // compute right eigenvectors
end if;
if getLEV then

 // compute left eigenvectors
end if;

end eigen;

This function may be called to calculate only the
eigenvalues of a matrix or to just determine
whether a matrix has only stable eigenvalues:
 ev = eigen(A);
 b = isStable(eigen(A)); //

to calculate eigenvalues and right eigenvectors:

 (ev, REV) = eigen(A, getREV=true);

to calculate additionally also the left eigenvectors:

 (ev, REV, LEV) = eigen(A, getREV=true,
getLEV=true);

7. Record Constructor
In Modelica 2, the missing constructor for the
record data type is introduced. It is defined as a
function with the same name and the same scope
as the corresponding record containing all
modifiable components of the record as input
arguments and a record instance as output
argument. Since a record constructor is just a
function, it can be used at all places, where a
function call is allowed. For example, with the
following record declaration

 record Complex "Complex number"
 Real re "real part";
 Real im "imaginary part";
 end Complex;

a Complex data type is defined and implicitly its
constructor function

 function Complex
input Real re "real part";
input Real im "imaginary part";
output Complex out(re=re,im=im);

 end Complex;

Additionally, functions are needed, operating on
this data type, such as:

 function add "Add Comp. numbers"
input Complex u, v;
output Complex w(re=u.re + v.re,

 im=u.im + v.im);
 end add;

The record constructor allows, e.g., to avoid the
usage of unnecessary auxiliary variables:

 Complex c1, c2;
equation

 c2 = add(c1, Complex(sin(time),
 cos(time));

Note, that the second argument of the function
application uses the record constructor to construct
a temporary instance of type Complex.

Record constructors are very useful in situations
where previously replaceable records have been
needed (which are much less convenient to utilize).
For example, a data sheet library of motors shall be
constructed. The motor model consists essentially
of two parts, one part containing all the data
defining a particular motor as a record, e.g.,

 record MotorData
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;

 ...
end MotorData;

and the motor model utilizing the motor data

 model Motor
 MotorData data;
 // connector definitions
equation

 ...
end Motor;

When using a motor, specific values of the motor
data could be given in the usual way:

 model Robot1
 Motor m1(data(inertia = 0.001,
 nominalTorque = 10,
 maxTorque = 20,
 maxSpeed = 3600));
 Motor m2(data(...));
 ...
 end Robot1;

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 8 The Modelica Association

When using the same motor type several times, it
is better to define the motor data just ones, i.e.,
build up a data sheet library by modifications of
the default values of the basic MotorData record:

 package Motors
record M103 = MotorData(

 inertia = 0.001,
 nominalTorque = 10,
 maxTorque = 20,
 maxSpeed = 3600);

 record M104 = MotorData(
 inertia = 0.0015,
 nominalTorque = 15,
 maxTorque = 22,
 maxSpeed = 3600);
 ...
 end Motors;

Whenever one of the motors of package Motors is
needed, it can be accessed by using the
corresponding record constructor:

model Robot2
 Motor m1(data = Motors.M103());
 Motor m2(data = Motors.M104(
 inertia=0.0012));
 ...
 end Robot2;

It is still possible to override parameters in such a
definition, see declaration of m2, by calling the
record constructor function with appropriate
positional or (preferably) named arguments.

8. Iterators
Modelica 2 introduces several enhancements to
support more powerful expressions, especially in
declarations, in order to avoid inconvenient local
function definitions:

Deduction of Ranges
In all iterators, e.g., in for-loop, the expression to
define the range of the iteration need not to be
given if the iterator variables appear as array
indices. In such cases the iteration range is
deduced from the dimension sizes of the
corresponding arrays. Example:

 for i loop
A[i] = B[i]^2;

 end for;

A nested for loop

 for i in 1:size(A,1) loop
 for j in 1:size(A,2) loop

A[i,j] = B[i,j]^2;

 end for;
 end for;

may be abbreviated as

 for i in 1:size(A,1),
 j in 1:size(A,2) loop

A[i,j] = B[i,j]^2;
 end for;

or even shorter by automatic deduction of ranges

 for i,j loop
A[i,j] = B[i,j]^2;

 end for;

Reduction Operators
An expression

 function(expression for iterators);

is a reduction-expression. Currently, only the
function names sum, product, min, and max can
be used. The result is constructed by evaluating
"expression" for each value of the iterator variable
and computing the sum, product, minimum, or
maximum of the computed elements. Examples:

sum(i for i in 1:10);

is the same as

=∑ =

10

1i
i 1+2+...+10=55

A Modelica translator may transform this operation
into:

algorithm
 result := 0;
 for i in 1:10 loop
 result := result + i;

end for;

The sum of elements could also be defined as

 sum(1:10);

using the built-in operator sum(). However, when
summing up complex expressions or non-scalar
expressions the reduction-expression can be made
more readable than finding the appropriate
vectorized expressions. As an example consider
summing the squares instead:

 sum(i^2 for i in 1:10);

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 9 Modelica 2002, March 18−19, 2002

The sum of squared elements could also be defined
as

sum(diagonal(1:10)^2);

but even though it is slightly shorter it is not as
readable.
Other examples are:

product(a[i,1]*s + a[i,2] for i);

is the same as

...)()()(2221121121 1 ⋅+⋅+=+∏ =
asaasaasa i

n

i i

As usual, a vector of values may be given as an
iterator:

sum(i^2 for i in {1,3,7,6})

Gives { } =∑ ∈

2

6731i
i 1+9+49+36=95

max(i^2 for i in {3,7,6})

results in 49

Iterator Array Construction
In a similar way as a reduction operator, the
construction

 {expression for iterators};

with n iterators generates an array with n
dimensions. The array is constructed by evaluating
the expression for every iterator value and
collecting the results to a corresponding array.
Examples:

 {i^2 for i in 1:5}

results in the vector

 {1, 4, 9, 16, 25}

An (n,m) array having the same value v for all
elements may be constructed as

 {v for i in 1:n, j in 1:m}

which is the same as "fill(v,n,m)". The special
matrix

4000

0300

0020

0001

may be created with

 {if i==j then i else 0
for i in 1:n, j in 1:n}

9. External Utility Functions
Modelica 1.4 has already a convenient and simple
to use interface for external C and FORTRAN
procedures which allows to pass nearly all data
types of Modelica. The only exceptions have been
String types which could not be returned. In
Modelica 2, the following utility functions can be
called in external C functions:

void ModelicaMessage
 (const char* string)
void ModelicaFormatMessage
 (const char* string, ...)
void ModelicaError
 (const char* string)
void ModelicaFormatError
 (const char* string, ...)
char* ModelicaAllocateString
 (size_t len)
char*
ModelicaAllocateStringWithErrorReturn
 (size_t len)

ModelicaMessage and ModelicaFormatMessage
output a string to the message window of the
Modelica environment. The latter with the same
format control as the C-function printf. In both
cases linefeeds need to be explicitly defined in the
string by "\n". Similarly, ModelicaError and
ModelicaFormatError output an error to the error
window of the Modelica environment. Contrary to
the first two functions, these functions never return
to the calling function, but handle the error
similarly to an assert in the Modelica code.
Example for usage:

 ModelicaFormatError(
 "\"%s\" cannot be copied to \"%s\""
 ":\n%s", oldFile, newFile,
 strerror(errno));

Here, an error message is printed if a file cannot be
copied. The error message of the operating system
containing the source of the error is included at the
end of the message by a call to the C function
strerror(...).

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 10 The Modelica Association

ModelicaAllocateString allocates memory for a
Modelica string which is used as return argument
of an external Modelica function. If an error
occurs, this function does not return. The Modelica
environment is responsible to free this memory
when appropriate. In a similar way
ModelicaAllocateStringWithErrorReturn
allocates string memory, but returns in case of
error. This allows the external function to close
files and free other open resources in case of error.
Due to these two functions, Modelica Strings can
now also be returned from external Modelica
functions. For example, with the following external
Modelica interface

function blanks
input Integer n(min=0);
output String blankString;

 external "C"
 blankString = blanks(n);
end blanks;

a string containing n blanks shall be returned. An
implementation of this function in C could be
accomplished in the following way:

 #include "ModelicaUtilities.h"

 const char* blanks(int n) {
 /* Create string with n blanks */

char *c = ModelicaAllocateString(n);
int i;
for(i=0; i<n; ++i)

 c[i]=’ ’;
 c[n]=’\0’;

return c;
 };

Note, that it is not necessary to check in the C-
function that the input argument "n" is not
negative, because this is already defined in the
Modelica interface and therefore the Modelica
environment is responsible to check this property.
Furthermore, it needs not to be checked whether
memory could be allocated, because
ModelicaAllocateString will not return in such a
case but will raise an exception in the Modelica
run-time environment and will jump to a place
where execution can continue, e.g., after
terminating the simulation.

Note that the newly introduced enumeration types
can also be used as input and output arguments in
external functions. They are mapped to int in C
and INTEGER in FORTRAN. The first value in an
enumeration type is hereby mapped to 1, the
second to 2, etc.

10. External Objects
Formally, external functions in Modelica 1.4 need
to be functions in the mathematical sense, i.e., they
do not have a memory and therefore return exactly
the same result if the function is called with the
same input arguments. In Modelica 2.0,
additionally external objects are supported in C,
i.e., several functions may operate on a C data
structure which is passed between function calls
and represents an "object memory". Example:

A table data structure may be defined in such a
way, that the table data is read in a user defined
format from file. Furthermore, the table is
interpolated in a user defined manner in the
Modelica model utilizing the last used table
interval for efficiently finding the current interval,
i.e., an internal memory is needed. This requires
the following Modelica definition:

class MyTable
extends ExternalObject;

 function constructor
input String fileName;
input String tableName;
output MyTable table;
external "C" table =

 initMyTable(fileName, tableName);
 end constructor;

 function destructor
input MyTable table;

 external "C" closeMyTable(table);
 end destructor;
end MyTable;

That is, a Modelica class has to be defined as a
direct subclass of the new predefined class
"ExternalObject". This class shall contain exactly
two function definitions, called "constructor" and
"destructor" (and no other elements). The
constructor function is called once before the first
use of the object. For each completely constructed
object (here: instance of MyTable), the destructor
is called once, after the last use of the object, even
if an error occurs. These two functions are always
called implicitly and it is not allowed to call them
explicitly. The MyTable Modelica class can be
used in a Modelica model in the following way:

model test
 MyTable table1=MyTable(
 "testTables.txt", "table1");
 MyTable table2=table1; //copy of table1
input Real u1, u2;
output Real y1, y2;

equation
 y1 = interpolateMyTable(table1, u1);

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 11 Modelica 2002, March 18−19, 2002

 y2 = interpolateMyTable(table2, u2);
end test;

In the declaration of "MyTable" either the
MyTable constructor is called using the class-name
as a function name, or a copy of another object of
the same type is constructed (see table2). The
objects may then be used in other external
Modelica functions. Here, a special external
interpolation function is used:

function interpolateMyTable
input MyTable table;
input Real u;
output Real y;
external "C" y =

 interpolateMyTable(table, u);
end interpolateMyTable;

The three external functions defined above may be
implemented in C in the following way:

typedef struct {
double* array;
int nrow;
int ncol;
int type; /* interpolation type */
int lastIndex; /* for search */

} MyTable;

void* initMyTable(char* fileName,
 char* tableName) {
 MyTable* table=malloc(sizeof(MyTable));
if (table == NULL) ModelicaError(

 "Not enough memory");
 // read table from file and store
 // all data in *table

return (void*) table;
};

void closeMyTable(void* object) {
 MyTable* table = (MyTable*) object;

if (object == NULL) return;
 free(table->array);
 free(table);
}

double interpolateMyTable(void* object,
 double u) {
 MyTable* table = (MyTable*) object;

double y;
 // Interpolate using "*table" data
return y;

};

The external object interface allows, for example,
convenient implementations of
• user-defined table data structures,
• access to property databases,
• sparse matrix handling with specially defined

data structures to store sparse matrices,
• hardware interfaces, since the constructor and

destructor are called exactly once, even in case

of error, so that the resources of the hardware
are initialized and freed correctly in all
situations (once the hardware is initialized, i.e.,
the Modelica object constructed, it is
guaranteed that the destructor is called exactly
once for this object when the object, i.e., the
hardware, is no longer needed or when an error
occurs).

11. Graphical Appearance
The graphical appearance of Modelica object
diagrams has been defined informally up to
Modelica version 1.4 in the respective tutorial. In
Modelica 2, the graphical appearance is formally
defined in the Modelica specification with several
improvements, especially based on the new
enumeration features. In this section the most
important properties are sketched. Note, that all
graphical information is defined with the
annotation(...) language element and annotations
are defined to have no effect on the result of a
simulation. Therefore, annotations can be ignored
when generating simulation code.

A graphical representation of a class consists of
two abstraction layers, icon layer and diagram
layer. The icon representation visualizes the
component by hiding hierarchical details. The
hierarchical decomposition is described in the
diagram layer showing icons of sub-components.

Icon and diagram layer are described by different
coordinate systems which means that the shape and
size of the two layers are independent from each
other. This is different to previous versions of
Modelica where only one coordinate system is
defined for both layers. As a result, in Modelica 2
it is easier to arrive at nice looking drawings,
because connectors may have different sizes in the
icon and diagram layer and because a resizing of
the diagram or the icon layer does not influence the
size of the corresponding other layer. All size
information, e.g., the size of icons and diagrams,
the thickness of a line or the size of a font, is
defined with the predefined type DrawingUnit:

 type DrawingUnit =
 Real(final unit="mm");

The interpretation of "unit" in "mm" is with respect
to printer output in natural size (not zoomed).
Therefore, a rectangle with width=20
DrawingUnits, height = 10 DrawingUnits and line
thickness of 0.5 DrawingUnits will be output as a

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 12 The Modelica Association

rectangle with 20 mm width, 10 mm height and 0.5
mm line thickness on a printer. The representation
on screen is not formally defined. It is typically a
direct mapping of "mm" to "pixels", e.g., 1 mm in
"natural size" is typically mapped to 4 pixels. On
high resolution screens, this mapping may be
different.

The properties of graphical objects are mostly
defined with enumerations, e.g.,

type LinePattern = enumeration(
 None, Solid, Dash, Dot,
 DashDot, DashDotDot);

Colors are defined as RGB values

type Color=Integer[3](min=0,max=255)

There is a set of predefined graphical primitives -
Line, Polygon, Rectangle, Ellipse, Text, Bitmap -
which may have graphical properties such as
lineColor, fillColor, linePattern, fillPattern,
borderPattern, lineThickness. For Text primitives,
the font name and the font size can be defined. All
graphical primitives are placed by defining the
placement of the corresponding object coordinate
system together with additional attributes to scale,
rotate, flip the object.

Note: a Modelica tool is free to define and use
other graphical attributes, in addition to those
defined in the Modelica specification. The only
requirement is that any tool must be able to save
files with all attributes intact, including those that
are not used. To ensure this, annotations shall be
represented with constructs according to the
Modelica grammar.

12. Outlook
We have this far described the status of Modelica
2.0. Some minor extensions have not been
mentioned, such as the "smooth" operator and the
"elseif" clause of if-expressions. In the near future
we can also expect the Modelica 2.0 libraries, and
in particular the blocks library, redesigned as
described above. In addition a ModelicaFunctions
library with matrix operations (linear algebra) will
be made available and the new rules for variable
number of input and output arguments will make it
possible to provide one function easily usable both
by experts and novices.

The ModelicaFunctions can also be used
interactively, as well as other functions and we

expect more use of Modelica scripts and
potentially a formal definition of such scripts, and
API-functions to access model properties from
scripts. Other free libraries are also under
development, e.g., for 1-dim. heat transfer and for
3-dim. vehicle dynamics.

From the language point of view some areas where
improvements are needed is already clear, e.g.,
enumerations (as described above), impulses
(eliminating the need for the reinit-operator [5]),
heterogeneous arrays and PDEs (automatic
discretization). More advanced use of the language
and construction of large libraries and models will
probably help in discovering areas where the
specification can be made clearer and where
further enhancement of the language is needed to
better support the growing number of users of
Modelica.

Bibliography
[1] Dymola, Dynasim AB, Lund, Sweden, version

5.0, http://www.dynasim.se.

[2] Mattsson S.E., Elmqvist H., and Olsson H.:
Means to Control the Selection of States in
Modelica (white paper of Dynasim), Nov.
2001.

[3] Mattsson S.E., Elmqvist H., Otter M., and
Olsson H.: Initialization of Hybrid
Differential-Algebraic Equations. Modelica
2002, Oberpfaffenhofen, pp. 9-15, March 18.-
19., 2002.

[4] Mattsson S.E., Olsson H. and Elmqvist H:
Dynamic Selection of States in Dymola.
Modelica'2000, Oct. 2000.

[5] Mattsson S.E., Olsson H. and Elmqvist H:
Varying structure Hybrid DAE (white paper
of Dynasim), Jun. 2001.

