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Abstract: In this paper, a method for controlling multivariable processes is presented. The 
controller design is divided into two parts: firstly, a decoupling matrix is designed in order 
to minimize the interaction effects. Then, the controller design is obtained for the process 
+ decoupler block. For this purpose, an iterative numeric algorithm, proposed by same 
authors, is used. The aim is to meet the design specifications for each loop independently. 
This sequential design method for multivariable decoupling and multiloop PID controller 
is applied to several examples from literature. Decentralized PID controller design, 
specifications analysis and time response simulations has been made using the TITO tool, 
a set of m functions written in Matlab. It can be obtained in web page 
http://www.uco.es/~in2vasef. Copyrigth  2002 IFAC.  
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1. INTRODUCTION 

 
Most of industrial processes are multivariable in 
essence (Shinskey, 1995). For such systems, loop 
interactions can arise and cause difficulties in 
feedback controller design. To solve this problem 
there exist several alternatives that can be centralized 
multivariable control (LQ, LQR and LQG, robust 
control, predictive multivariable control, fuzzy 
control,...) or decentralized control. This last is the 
most broadly used in the industrial environment. 
With decentralized techniques, a multivariable 
system with n inputs and n output variables is treated 
as n monovariable systems. The sacrifice that 
supposes the invariable performance deterioration of 
a decentralized control structure when it is compared 
with a full multivariable control strategy is 
compensated with certain advantages as design and 
hardware simplicity or easiness of use. 
 
Some of decentralized methods found in literature 
could be classified under the following topics, 
showing the interest that it has raised in the last 
years: 

 
First group bases their design on some SISO method. 
These formulas indicate the direction in which the 
PID parameters have to be detuned to compensate the 
interaction effects when all loops are closed. Method 
of Shinskey (1995) and BLT method (Luyben, 1992), 
one of most cited in literature, are included in this 
group. However, with these methods it is difficult to 
establish a priori design specifications in all loops 
and they can be rather considered of trial and error.  
 
A second group includes works that look for critical 
gains of the system in order to tuning the PID 
controllers. This gain can be obtained by means of 
proportional controllers (Niederlinski, 1971), or by 
means of relay method (Zhuang and Atherton, 1994), 
(Halevi et al, 1997), (Toh and Devanathan, 1993), 
(Shiu and Hwang, 1998). Not all these methods 
require a complete model of the systems. 
 
Lastly, methods included in a third group use the 
whole transfer function matrix taking into account 
the interaction effects, and the controllers are 
obtained by means of analytic, numeric or graphics 
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methods. Some methods (Wang et al, 2000) use 
optimization algorithms to obtain controllers, other 
(Zhang et al, 2000) uses pole placement techniques, 
and some (Ho et al, 1995) provides on-line tuning 
formulas. Method described in section 3 (Vázquez et 
al, 1999) also belongs to this group.   
 
But sometimes, interaction between variables or 
system dynamics can impede the application of one 
of previous decentralized methods, and design 
specifications are not met. In this case, and before 
using some centralized method, there is an hybrid 
alternative consisting of decomposing the design 
problem into two parts: firstly, decoupling the system 
in order to minimize interaction or to make the 
system diagonal dominant; then, design the 
controllers using some decentralized method. The 
final control system will be the product of the 
decoupling and the controller matrixes. The 
decouplers, together with single-loop controllers, 
constitute the multivariable controller. This 
alternative could be used as another design option. 
But not all decentralized design methodologies are 
prepared to do that. Section 2 described how 
decoupling can be done, and section 3 how a 
decentralized design technique (Vázquez et al, 1999) 
fulfill this purpose. 
 
 

2. DECOUPLING DESIGN 
 
The design of a decentralized control system with a 
decoupling matrix can be done combining a diagonal 
controller Kd(s) with a block compensator D(s), so 
that the controller manipulates the variable u’i instead 
of the ui, as can be appreciated in figure 1, for the 2 x 
2 case. With this configuration the controller see the 
process as a set of n completely independent 
processes or with the interaction minimized.  

 
Fig.  1 : General  2 x 2 system  with  decouplers  and   
             single-loop controllers 
 
The essence of decoupling is the imposition of a 
calculation net that cancels the existent process 
interaction, allowing the independent control of the 
loops.  In decentralized design, the question is not to 
eliminate interaction, but to take it into account. A 
multivariable system may still experience 
interactions and responds poorly. The objective in 
decoupling is to compensate for the effect of 

interactions brought about by cross coupling of the 
process variables.  
 
In literature there are different decoupling methods: 
Lineal decoupling (Desphande, 1989) is most 
extended method. In this, the decoupling matrix try 
to eliminate interactions from all loops, obtaining 
following elements for a 2 x 2 system. 
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)s(g
)s(g

)s(d
11

12
12 −= ,

)s(g
)s(g)s(d

22

2121 −= , d22=1  (1) 

 
Implementation of this decoupling matrix has some 
problems: What happens if numerator has bigger 
order than denominator?, what if delays exist?, and 
what if these delays only appear in the denominator?. 
The different works propose some solutions like Pade 
approximations for delays or steady state decoupling 
as a first option to prevent this problems.  Other 
solutions consist of applying partial decoupling, 
setting d12 or d21 null. This fact avoid problems 
originated in one loop reach the other. 
 
There are some other methods: one of them looks for 
diagonal dominance in the system as ALIGN 
algorithm designed by McFarlane and Kouvaritakis 
in 1974 and described in (Maciejowski, 1989). Other 
design by means of singular value decomposition 
(Desphande, 1989) or by means of inverse 
decoupling (Wade, 1997) that produces the process 
input signals by combining one controller output with 
the other process input signals. 
 
Even if decouplers are incorporated, the interaction 
effects cannot be completely eliminated because of 
model mismatch. Then, single-loop controllers 
cannot be tuned independently, and a sequential 
tuning algorithm that takes interactions into account 
should be used. Next section describes one of these 
algorithms.  
 
 

3. MIMO DESIGN METHODOLOGY  
 
Analysis of decentralized methods described in 
section 1 show several interesting points:  
 
- Obtaining different design specifications for 

each loop implies solution methods based on 
some kind of iteration. If designs are carried out 
loop-by-loop, tuning one of them can detune the 
others.  

- In spite of abundance of methods, there are no 
simple and general solutions for the 
multivariable tuning problem. Or methods are 
used by optimization (Wang et al, 2000) that do 
not guarantee an appropriate solution and they 
require several iteration processes, or the 
solutions are too particular, for concrete models 
(Ho et al, 1996) or too simple (Shinskey, 1996), 
(Luyben, 1992) that only get a first approach to 
the problem.  
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In (Vázquez et al, 1999), a method of tuning PID 
controllers for systems with decentralized control is 
presented. Its fundamental characteristics can be 
summarized in following points:  
- It is a generic method for n x n systems with 

decentralized control.  
- It is a method based on successive SISO tuning 

that does not suppose any additional constraint 
to obtained controllers (except for their 
decentralized structure) neither to the transfer 
functions matrix. This matrix can include the 
transfer functions of only the process or also 
including the decoupling net. Present work 
exploits this characteristic.  

- The SISO methodology integrated in the 
algorithm has certain imposed limitations: it 
should allow the controller be designed from a 
frequential description of the process (their 
frequency response). And it should quantify the 
specifications achievement by means of a quality 
index, J. This index controls the iteration 
evolution of the tuning algorithm.  

- The method allows a decoupling matrix to be 
included between the plant and the controllers.  

- The design methodology is divided into two 
phases that are carried out in a sequential and 
combined way: the structural decomposition and 
the controller design. These two phases are 
described next.  

 
3.1. System structural decomposition   
 
This phase consists of the decomposition of a n x n 
multivariable system into n SISO systems. To solve 
this problem the structural decomposition, introduced 
by Zhu (1996), is used. Let be a n input system 
controlled by means of a decentralized control 
strategy. Now, n-1 loops have been closed by means 
of n-1 controllers. The process ‘seen’ from the free 
input to the free output is needed. The scheme 
corresponds to the figure 2, where loop i has not yet 
been closed (the pairing problem has been already 
solved and input-output pairs are in the diagonal).  

                  Fig. 2: Structural Decomposition 
 
In the structural decomposition scheme, K1 is the 
controller that closes the loop between input i and 
output i. The set of n-1 controllers, whose loops are 
already been closed, is K2. This way, the controller 
matrix is:  
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The process element gii has its feedback loop open. 
The rest of elements of its same row are called G12. 
The rest of elements of its same column are called 
G21. And the rest of elements of G are called G22. 
Then, the process matrix G can be written as:  
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The process seen from input i to output i when the 
other loops has been closed is called ig~  and it is 
obtained from 

( ) 21
1

222212iii GKGIKGgg~ −+−=         (4) 
where, using the above notation, gii is an element of 
G, that is, a SISO transfer function, G12 a transfer 
function row vector of dimension 1 x (n-1), G21 a 
transfer function column vector of dimension (n-1) x 
1, K2 is a diagonal square matrix of dimension (n-1) 
and I is the identity matrix of order n-1. In the case of 
2 x 2 processes, elements G12 and G21 are also 
individual SISO transfer function elements of G, and 
the calculation of ig~  do not imply matrix operations.  
 
Opposite to standard transfer functions, the ig~ are not 
an intrinsic property of the system, and they depend 
on the designed controllers, as can be observed in 
equation (4). Possibly, they have not a representation 
by means of Laplace transformation.  
 
The structural decomposition implies some important 
considerations for the decentralized control: some 
global system properties, as interaction, stability, 
integrity, etc, could be deduced from the properties 
of the obtained n SISO subsystems. 
 
Also, no supposition about G has been made, and 
then, structural decomposition could be applied to 
every transfer functions matrix. Applying Nyquist 
theorem to each individual loop obtained with 
structural decomposition, stability criterion is more 
interesting from the point of view of applicability to 
decentralized multivariable systems. Then, the n 
SISO systems stability implies MIMO stability. 
 
Theorem 1: Supposing that individual elements of 
G(s) and their SISO independent subsystems do not 
have poles in the right hand plane, the system with 
decentralized control is stable if and only if the 
Nyquist contour of the equivalent open loop transfer 
function iig~k  does not encircle point (-1,0), i.e. 

( ) i0g~k,1N ii ∀=−                        (5) 
 
The structural direct Nyquist arrays (SDNA) are the 
representation of the n direct Nyquist diagrams of 

( ) i0g~k,1N ii ∀=−      . 
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3.2 Controllers design 
 
The proposed is a frequency-based method and 
stability measures as phase and gain margins could 
be used. But most of existent methods requires a 
model for obtaining the design parameters. Carrying 
out the structural decomposition, the resulting 
transfer function ig~  could be not a rational function, 
possibly due to the inclusion of delays in model 
systems. In order to solve this problem a frequential 
representation of this transfer function ig~  it is used, 
i.e. a frequency response array. But this take implicit 
another problem: what SISO design method to use? 
The particular solution has been the monovariable 
methodology described in (Morilla and Dormido, 
2000). This methodology supposes, and in fact 
requires, a model with the description of the system 
dynamics. However it leaves open the possibility to 
be adapted to solve the problems outlined previously: 
it can be modified allowing the controllers to be 
designed from an array with the frequential 
representation of the frequency response and also, the 
obtained results can be compared with the design 
specifications to present an indicative of quality, 
indispensable for the proposed solution search 
method. These two phases cannot be considered 
isolated, since the design process consists of an 
iteration of both. This is because, as equation (4) 
shows, the ig~  transfer functions, obtained with 
structural decomposition, incorporate the controller 
transfer functions in their definitions. Thus, every 
time a design is done for one of these transfer 
functions, it will be needed to recalculate the others. 
From the new ig~ , a new controller could be 
designed, and then, definitely, the algorithm needs an 
alternation between the two phases.  
 
 

4. EXAMPLES 
 
One of advantages that presents this methodology of 
multivariable controller design is to be independent 
of the process model. This has been shown in 
numerous examples in (Vázquez et al, 1999), which 
can be repeated with TITO tool. Also, the model does 
not have reason to be a rational expression in the 
Laplace operator, but rather it can be a frequency 
response array. These characteristics allow the 
immediate extension of this method, using it  
accompanied by some decoupling strategies (one of 
the described in section 2 or another), so that in a 
first step the decoupling matrix is obtained and, in a 
second step, the controllers for the decoupler+process 
block designed. Some of the possibilities are shown 
in following examples.  
 
 
Example 1: Following shows a system model with a 
RGA next to 1.7.  Some decoupling strategy could be 
tested. It is a distillation column (Vinante and 
Luyben, 1972) that describes the existent dynamics 

between reflux and vapor flow and the temperatures 
of plates 4 and 17: 
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In order to analyze the effects of designing with 
decouplers, expressions (1) are used. In this case, 
dynamic and steady state decoupling coincide:  

d11=1,   d12=-0.59,   d21=-0.65   and   d22=1      (7) 
 
Design specifications are phase margin (PM) of 45º 
and gain margin (GM) of 4 for both loops, and 
looking for a PID with a limit of the relationship 
between the derivative and integral constant (α) 
equal to 0.01.  
 
The design using iterative algorithm without 
decouplers gets following controllers:  

    




 ++= s035.0

s82.1
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 ++= s073.0

s79.1
1170.2k2                   (8) 

 
Desing specifications are met with combined (PM 
and GM) tuning design in three iterations. Interaction 
impedes using other methods based on Gershgorin 
bands, as Ho’s method.  
 
Next, a complete decoupling is chosen. Design 
specifications are the same as before (PM=45º and 
GM=4 for both loops). The algorithm converges in 
same number of iterations as before, obtaining 
following controllers 

       




 ++= s057.0

81.2
11964.0k1        and  

      




 ++= s014.0

s766.0
11967.0k2              (9) 

 
With this design, specifications are also met, but 
now, controlled system was decoupler + process 
block. Time responses are shown in figure 3. 
Response without decouplers is also superimposed.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  Time response of example 1 with decoupler  
             and without decouplers (continuous)  
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A slight modification can be appreciated, mainly in 
second loop, and an interaction decrease on the first 
one. Although modifications in time response are 
minimum, design is good to show methodology 
effectiveness when decouplers are incorporated. 
 
Example 2: Table 1 shows the results of PID 
controller design for the system  
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for different decoupling nets (dynamic, in steady 
state,  partial and total) and for different controllers 
(PI, PID). All the designs have been carried out with 
specifications of PM=60º and GM=4 for both loop. It 
is a water-methanol distillation column (Wood and 
Berry, 1973) analyzed in numerous later works (Ho 
et al, 1996), (Toh and Devanathan, 1993), (Vázquez 
et al, 1999) (it appears in the practical whole of 
multivariable control references). 

 
Table 1: Comparative of different decouplers 

and designs of  example 2 
 
Figure 4 shows superimposed time responses of the 
system without decouplers and with total dynamic 
decouplers, with a PI and a PID (the two last designs 
of table 1). The PID design has been carried out 
limiting α to 0.25.   
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4:  Time response with decouplers (PI, and PID) 
             and  without decouplers (continuous). 
 
Note that interaction effects decrease not very 
significantly. This same reduction could be obtained 
tuning the second loop in a less aggressive way (for 
example PM=80º), which would reduce its effect on 
first loop.   

Example 3: This third example studies a process 
proposed by Niederlinski (1971) and analyzed with a 
set of decouplers proposed by Shiu and Hwang 
(1998). The process function transfer matrix is:     
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Shiu proposes the following decouplers, obtained 
after identifying the ig~ functions applying a relay 
method: 
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In order to compare time responses with and without 
decouplers, the tuning algorithm has been used with 
the same design specifications (PM = 60º for both 
loops).  
 
Without decouplers, controllers are 
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obtained in six iterations of the algorithm. With 
decouplers, the controller equations are  
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      and 
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1126.0k2                        (14) 

obtained in only three iterations, because, in general, 
the algorithm converges quicker the more dominant  
the system is.  
 
Figure 5 shows time response, with and without 
decouplers. Note that interaction decreases. If this 
fact is quantified by means of some measure as the 
IAE test, it can be proven that in the response without 
decouplers, IAE is 3.42, while when decouplers are 
applied it is 0.98.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Time response of the system of example 3,  
           with and without decouplers (continuous). 
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Gerhgorin bands and SDNA of the process with and 
without decouplers can also be compared in figures 6 
and 7. Note that dynamic interaction effects are 
reduced significantly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: SDNA and Gershgorin bands of system of  
          example 3 with decouplers  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: SDNA and Gershgorin bands of system of  
           example 3 without decouplers.  
 
 

CONCLUSIONS 
 
This work has been developed to design 
multivariable controllers including a decoupling net. 
It takes advantage of methodology proposed in 
(Vázquez et al, 1999), and it does not need a transfer 
function matrix with the system model but a 
representation with frequency response. 
Independently of how decouplers had been obtained, 
they can be included between process and 
controllers. Then, a decentralized PID controller is 
designed, using some of the different possibilities of 
proposed algorithm: design with only phase margin 
specifications for both loops, only gain margin, or a 
combination of PM and GM specifications.  
 
All designs have been obtained with TITO tool, a set 
of MATLAB m-functions that can be obtained in 
web page http:// www.uco.es/~in2vasef. 
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