Boost Radiation Hardness Assurance in your Space Mission with Machine Learning

Amor Romero Maestre

@FlipPhysiscs 21 - 25 March 2022, Valencia, Spain

PRECEDER (Prediction of the Electrical Behavior of Electronic Devices under Radiation, Spanish acronym) is a **new concept** in the strategy of ensuring the radiation hardness in electronics developed by our group.

The idea is based on the use of **archival data** to assess the risk associated to radiation environments without testing through **Machine Learning methodology**.

Radiation testing is the most decisive way of studying the radiation degradation. However, the increasing use of **COTS** (Commercial Off-The-Shelf) devices and the **New Space** challenges are pushing the need of finding new approaches to assess the risk associated to the radiation environment.

CNA is a mixed investigation center from the University of Seville, CSIC and Junta de Andalucía. It is one of the **ICTS** - **Singular Scientific-Technical Facilities** in our country, dedicated to interdisciplinary research in the field of applications of particle accelerators and ionizing radiation.

Centro Nacional de Aceleradores

DEACELERADOI

3

Alter Technology, a member of the TÜV NORD group, is a leading company in engineering, procurement and testing of electronic equipment and components for the space, military and aeronautical sectors, among others.

ALTER TECHNOLOGY

A critical step of **Radiation Hardness Assurance (RHA)** for space systems is given by the parts selection in concordance with the expected radiation effects. **Radiation testing** is the most decisive way of studying the radiation degradation.

PRECEDER consists of analyzing the structure of the set of results available from **irradiation tests** performed on electronic devices, mainly those used for space or high energy projects. To do this, the data must be **classified**, and the **structure** of each group must be homogenized in order to extract useful information to feed the **Machine Learning software**.

The aim of our proposal is to extract useful information from experimental data, available in a multitude of test reports previously carried out on different types of devices. And that, based on this previous experience, we can **predict** what will be the **behavior** of similar **components** without the need to test them under radiation.

Label encoding

[@]FlipPhysics 21 - 25 March 2022, Valencia, Spain

Once the data is structured, **Machine Learning techniques** are applied to the available data to **identify the models** and patterns that allow to obtain predictions of the behavior of electronic devices.

Finally, the behavior of a small sample of devices is analyzed to validate the predictions against experimental results.

@FlipPhysics 21 - 25 March 2022, Valencia, Spain

8

Pedro Martin Holgado Irradiation Unit

Amor Romero Maestre

DUED

Irradiation Unit

Manuel DomínguezDr.Responsable del proyectoHeat

Dr. Aintzane Lujambio Head of the Microwave Laboratory

JL García SW Developper

Jose de Martín Data Scientist

Jose Manuel Ramirez Data Scientist

Fernando Morilla University Professor

9

• Publications

- "How the Analysis of Archival Data Could Provide Helpful Information about TID Degradation"
 - Pedro Martín-Holgado, Amor Romero-Maestre, José de-Martín-Hernández, José J. González-Luján, Iván Illera-Gómez, Yolanda Jiménez-de-Luna, Fernando Morilla, Mario Sacristan Barbero, Rubén García Alia, Manuel Domínguez, and Yolanda Morilla
 - Accepted in IEEE Proceedings Radiation and its effects on components and systems RADECS 2021
- "How the Analysis of Archival Data Could Provide Helpful Information about TID Degradation. Case study: Bipolar Transistors"
 - Pedro Martín-Holgado, Amor Romero-Maestre, José de-Martín-Hernández, José J. González-Luján, Iván Illera-Gómez, Yolanda Jiménez-de-Luna, Fernando Morilla, Mario Sacristan Barbero, Rubén García Alia, Manuel Domínguez, and Yolanda Morilla
 - In revision. IEEE Transactions on Nuclear Science
- "A Novelty Approach of Radiation Hardness Assurance for Aerospace Applications based on Machine Learning".
 - Yolanda Morilla and Pedro Martín-Holgado
 - In press. Chapter of book ARTIFICIAL INTELLIGENCE: THE NEW PARADIGM TO BOOST SOCIETY 5.0, CRC Press Taylor & Francis Group, 2021.
- "Study of the performance characteristics degradation of optocouplers combining TID-DD effects with gamma and protons"
 - Pedro Martín-Holgado, Amor Romero-Maestre, José de-Martín-Hernández, José M. Ramírez García. José J. González-Luján, Álvaro Ricca Soaje, Mario Sacristan Barbero, Rudy Ferraro, Rubén García Alia, Manuel Domínguez, and Yolanda Morilla
 - Sending to IEEE Nuclear and Space Radiation Effects Conference NSREC 2022, July 18-22, Provo, Utah USA.
- Rights of images and copy-righted:
 - ESA: <u>https://www.esa.int/ESA_Multimedia/Images</u>
 - CNA
 - Alter technology

Amor Romero Irradiation Unit Centro Nacional de Aceleradores

Master's Degree in Microelectronics: Design and Application of Micro/Nanometric Systems Student

Email: mrmaestre@us.es

