
Virtual and Remote Control Labs Using Java: A Qualitative Approach
By J. Sánchez, F. Morilla, S. Dormido, J. Aranda, and P. Ruipérez

In our modern society, distance education has become a
viable solution for students who require more flexible,
accessible, and adaptive teaching systems, without spa-

tial and temporal restrictions [1], [2]. In the past, the inter-
action methods for distance education were limited to the
telephone, postal mail, or fax. Today’s new information tech-
nologies provide alternative tools for improving teacher-stu-
dent interaction, two of which can be pointed to as the most
capable and reliable for distance education. These tools are
hypermedia systems as a new way of arranging information
and wide-area communication networks (i.e., the Internet)
for information support [3].

Although these tools are sufficient for constructing sup-
port systems for subjects without a strong practical compo-
nent, teaching of control systems or other subjects with
strong experimental content requires a new element. This
new element must allow students to apply the knowledge
acquired in a way that goes beyond the traditional physical
laboratory, which requires the presence of students as well
as an instructor or tutor [4], [5]. If the laboratory environ-
ment is to be transferred to distance education, the element
required to put automatic control concepts into practice is
the virtual control laboratory [6]-[9]. An even more ambi-
tious prospect is a virtual control laboratory with
telepresence systems, which offers the stimulating possibil-
ity of students having remote control of the physical sys-
tems in place at the university lab [10]-[14].

Today, numerous commercial and university computer
tools are available for the analytical study of control systems
from a purely graphic or a numerical viewpoint, or a combina-
tion of both approaches [15]-[18]. These quantitative tools re-
quire the user to have a university-level knowledge of
mathematics and a solid background in control systems.

This article describes a new way of teaching adopted at
the Universidad Nacional de Educación a Distancia (UNED)
that uses dynamic and interactive simulations in a
stand-alone or Web-based environment. The article focuses
on how this new stand-alone experimentation environment
maintains a clear separation between the graphical experi-
mentation interface, developed in Java, and the math and
simulation engine. By constructing the environment in this
fashion, the math engine can be replaced with a different
one or with a real plant, or can even be ported to a remote
server. A Web-based, multiuser virtual lab is also possible
without the necessity of reprogramming the experimenta-

tion interface code. Other differences with respect to tools
are the dynamic simulations, the user interactivity, the gen-
eration of new experiments as goals change, and the oppor-
tunity to practice with classical or advanced control
strategies in different plants: a heat exchanger, a tank, a dis-
tillation column, or an inverted pendulum.

The article is organized as follows. First, we discuss our
reasons for constructing such an environment. Next, we de-
scribe the various elements of the environment and the
types of experiments that can be built to provide students
with new practical experiences. Following that is a discus-
sion of the tools used to construct the environment and the
communication mechanisms between them. Finally, we de-
scribe options for replacing the math engine (MATLAB/
Simulink) and the porting of the stand-alone environment
from a local to a Web-based environment. The Appendix
gives a detailed description of how to link the Java experi-
mentation interface and the MATLAB workspace.

Why Is a Conceptual Laboratory Needed?
The idea of this virtual laboratory arises from the necessity
for a suitable system that can be used by two different
groups of people: plant operators and university students.
Those in the first group typically have only a basic
(high-school level) mathematics background, but they work
on a daily basis with real control systems. They usually in-
teract with the industrial environment through control pan-
els, although at times they have contact with actual devices.
University students, on the other hand, have a strong math-
ematics and control engineering background, but, except
for experiments carried out at the university laboratory
(e.g., inverted pendulum, dc motor, magnetic levitation),
they have little experience with how industrial plants oper-
ate. Therefore, they are unable to anticipate how systems
will react in certain situations. Thus, a qualitative teach-
ing/training system is a useful tool for learning how to deal
with certain cases.

Using this method, two of the current problems in dis-
tance teaching are solved: temporary availability and the
training aspect. Students/operators can practice anywhere
at any time, without the need to go to a training center or
keep to a timetable (the teaching/training system will be
available 24 hours a day via their computers). At the same
time, because the environment is interactive, the users can
simulate plant operations that they would otherwise have
to experience in actual situations.

8 IEEE Control Systems Magazine April 2002

Sánchez (jsanchez@dia.uned.es), Morilla, Dormido, Aranda, and Ruipérez are with the Dpto. de Informática y Automática, UNED, Avda.
Senda del Rey no. 9, 28040 Madrid, Spain.

0272-1708/02/$17.00©2002IEEE

EYE EDUCATIONon

This work is not intended to develop a powerful universal
control panel that is adaptable to any industrial system. For
educational purposes, it is more appropriate to begin with
an understanding of the basic components of an industrial
plant and provide the student/operator an individualized
environment with a collection of actual plant elements (i.e.,
heat exchangers, tanks, distillation columns). Typical uni-
versity laboratory experiments such as inverted pendulums
and magnetic levitators are also included.

Although the environment encourages individual work,
the trainer/tutor role is still important. Obviously, stu-
dents/operators can interact with the environment, but
without the appropriate instructional support, they will be
unable to take full advantage of it. Thus, the tutor/instructor
plays an essential role, with responsibility for adapting the
configuration and behavior of the training environment ac-
cording to educational needs. As will be seen later, this is
possible because the entire system is parameter based at
different levels.

This environment is also useful to help the teacher bring
the theoretical concepts (which are basically quantitative) to
the practical world (which is more qualitative and intuitive).

Dynamic Experimentation Environment
The simulation environment is completely interactive and
dynamic (no batch or offline simulations). In this way, the
qualitative aspects are immediately highlighted graphically
and numerically as a response to the user’s actions.

Students are not expected merely to tune sliders and con-
trollers, to run the simulation, to examine the “scopes” (dis-
plays), and to repeat all the steps if they want to change
some of the data. During the experimentation phase,
changes in parameters and variables are immediately re-
flected in the graphical user interface (GUI). Thus, users can
visualize on the fly how the model behavior evolves accord-
ing to the values of the interactive variables.

The simulation environment has been developed to con-
vey a feeling of realism, as if the users are in an actual con-

April 2002 IEEE Control Systems Magazine 9

Figure 1. Interface for basic control of a heat exchanger. Figure 2. Interface for cascade control of a heat exchanger.

Figure 3. Interface for level control of a horizontal tank without
a pump.

Figure 4. Interface for advanced control of a distillation
column.

trol room and their attention is focused on a basic element
of the process. Additionally, this characteristic gives the
tutor/instructor a priceless tool for the online explanation
of certain concepts without having to repeat different sim-
ulations. A glance at the scopes allows students to under-
stand how the plant behavior is changing when the
parameters are varied.

Graphical Interface
Interactivity is essential for imparting some realism to the ex-
periments the student carries out with the simulation envi-
ronments. To emphasize the dynamism and qualitative
aspects, the experimentation system GUI is closely inte-
grated with the simulation, providing features such as dy-
namic visualization, animation of elements, and logging of
variables and events. The GUI is composed of the following
parts: the process diagram, the control panels, univariate
scopes, the multisignal scope, and the historical log. Each
part is briefly described in this section.

Process Diagram

This graphical diagram of the process (some of the objects
can have animation) provides alphanumeric visualization of
the most important signals and units, plus an outline of the
control strategy, allowing access to the parameters and
modes of the controllers. The process diagrams of four
plants are shown in Figs. 1-4, and the most important signals
of each plant are listed in Table 1. An important aspect of
these diagrams is that the schematic representation of the
physical elements can be changed. For example, the tank in
Fig. 3 can be configured as vertical or horizontal, with or
without a drainage pump. In this case, four different configu-
rations can be modeled: vertical deposit without a pump,
horizontal without a pump, vertical with a pump, and hori-
zontal with a pump. Similarly, with the distillation column
(see Fig. 4), it is possible to switch from a classical control
strategy to an advanced strategy with feedforward compen-
sation and cascade control.

10 IEEE Control Systems Magazine April 2002

Table 1. Process signals of some models.

Plant Interactive variables Noninteractive variables

Heat exchanger with basic control Steam pressure (bar)
Input temperature (°C)
Input flow (m3/h)
Manual control (%)
Temperature set point (°C)

Time of simulation (min)
Flow of input steam (Tm/h)
Output temperature (°C)
Opening of the valve (%)

Heat exchanger with cascade control Steam pressure (bar)
Input temperature (°C)
Input flow (m3/h)
Vapor flow set point (Tm/h)
Manual control of temperature controller (%)
Manual control of flow controller (%)
Temperature set point (°C)

Time of simulation (min)
Flow of input steam (Tm/h)
Output temperature (°C)
Opening of the valve (%)

Level control of a tank Input flow (m3/h)
Level set point (%)
Manual control of level controller (%)

Time of simulation (min)
Level of the tank (%)
Output flow (m3/h)
Overflowing flow (m3/h) (1)

Basic and advanced control
of a distillation column

Load flow (m3/h)
Composition (%C3)
Head temperature set point (°C)
Bottom temperature set point (°C)
Manual control of the reflux (m3/h) (2)

Manual control of L/D (2), (4)

Manual control of steam (m3/h) (3)

Manual control of V/F (3), (4)

Time of simulation (min.)
Head temperature (°C)
Bottom temperature (°C)
Sludges in the head (%C4)
Distilled (m3/h)
Sludges in the bottom (%C3)
Bottom flow (m3/h)

(1) In case its visualization is active, the value of this variable only appears when an overflow situation occurs. Once the overflow ends, the variable
disappears.

(2), (3) Both variables are mutually exclusive; that is, one or the other will appear according to the configuration of the column.

(4) L: Reflux flow rate, D: Distillate flow rate, V: Overhead vapor flow rate, F: Feed flow rate.

Control Panels
These panels are composed of three types of elements
(buttons, sliders, and fields) and can be grouped into three
categories.

• Control panel: This panel, located at the top of the in-
terface, allows the user to stop, to continue, and to re-
start the simulation process.

• Interactive variable panel: This panel is spread over
the whole diagram and consists of sliders and alpha-
numeric fields to modify the values of the distur-
bances, the set points, and the manual control signals.
To allow the tutor to limit and guide the user’s actions,
the way in which the user interacts with this panel can
be configured. There are three possible configura-
tions for each variable: totally hidden, visible but not
modifiable, or visible and modifiable. Because of their
characteristics, they are called interactive variables
(see the second column in Table 1).

• Controller panel: These panels or windows (see Fig. 5)
are generally hidden and are only visible when the
user clicks on the symbol of a controller (in our case,
the controller is represented by a circle with two let-
ters inside it indicating the control variable: LC for
level controller, TC for temperature controller, and FC
for flow controller). As can be seen, it is possible to
modify the parameters of the controllers as well as the
operation mode (manual, automatic, or cascade) in an
interactive way. As with the interactive variables, and
in accordance with the aim of the experiment, the tu-
tor/instructor can modify how the user interacts with
the controllers by specifying ranges and initial values
of the parameters, initial mode of the controller, direct
or inverse control action, and control mode changes,
if desired.

Scopes
These provide the graphical visualization of the main sys-
tem variables. As the simulation advances, these scopes dy-
namically and continuously reflect any change in the
process variables. The changes in the system signals can be
due to the user’s actions (movement of a slider in
the process diagram) or to disturbances prepro-
grammed for the experiment by the tutor/in-
structor. At the bottom of Figs. 1 and 2, the
temporal evolution of two signals of the heat
exchanger can be observed.

Multisignal Scope
A disadvantage of the previous scopes is that
only one signal can be shown at a time. The
graphical interface has a special panel that al-
lows all the signals and disturbances to be
shown in a single window (see Fig. 6). Thus, the
user has a complete view of everything that is

happening in the system. An important aspect of these
scopes is that any event preprogrammed by the tutor/in-
structor is presented as a vertical line in the window. In this
way, the user can see how and when a disturbance has been
introduced in the system and how it will evolve from that in-
stant on.

Event and Action Log
To analyze what happens during the experimentation
phase, the GUI can generate a plain text file with the sam-
ples of all the system signals: controller parameters, con-
trol modes, interactive variables, and output variables.
The user or the tutor/instructor can subsequently use an
external tool to analyze all that happened during the simu-
lation stage.

Browsing the Experimentation Environment
To meet the needs of both the tutor/instructor and the stu-
dent/operator, the training GUI has two interrelated compo-
nents—the browsing and the experimentation windows—
both of which are parameter based.

The browsing component allows the experiments to be
adjusted to the hierarchical structure of a textbook or a
course. Three browsing levels are considered: chapters,
lessons, and experiments. Thus, the environment could
have i chapters, each chapter could have j lessons, and
each lesson, k experiments (these experiments can be dif-
ferent, using either the same plant type or different
plants). In this simple way, the tutor/instructor can tailor
the environment for
teaching a course with
a certain profile, and
the students/operators
can select an experi-
ment from all the exist-
ing ones in an orderly
way, according to the
concepts or situations
they want to study or
observe.

April 2002 IEEE Control Systems Magazine 11

Figure 5. Controller panel.

Figure 6. Multisignal scope.

Fig. 7 shows the browsing window of the environment. Its
hyperindex-based structure consists of menus the user can
browse to select a particular experiment. To provide more
information to the user, a textual description of the experi-
ment objectives is provided at the time an experiment is se-
lected. For example, a brief description of an experiment for
studying the feedback concept in a control system with a
heat exchanger is given in the sidebar above.

The browsing hierarchy is contained in a plain text file
called the browsing structure file. The syntax that defines the
browsing hierarchy has been designed so that its creation and
modification is a simple process of creating groups and sub-

groups (as in the Windows-like configuration files). This file
contains both the browsing hierarchy (chapters, lessons,
and experiments) and the definition of the experiments
(plants to use, experiment files, and files of parameters).

Once the experiment has been selected, the user can be-
gin to practice by means of the graphical experimentation
interface. A tutor/instructor will have configured the visual
aspect of the graphical interface and the process behavior
ahead of time, so the experiment is focused toward attain-
ment of a certain goal in accordance with the experiment de-
scription shown in the browsing window.

Some Experiments
In this section, we describe some of the exercises that the tu-
tor/instructor can propose to students for studying qualita-
tively the dynamic characteristics of any plant. These
exercises are grouped into three generic categories:

• knowledge of the process,
• manual control,
• automatic control.
Each of these points is detailed in the following para-

graphs.

Knowledge of the Process
The objective of this kind of exercise is to familiarize the
user with the behavior of an industrial process. The pro-
posed exercises are as follows:

• Qualitative description. The student is requested to
complete a qualitative matrix of stationary states
about the model he or she is going to practice with. In
such a matrix, the columns are the interactive vari-
ables and the rows are the output or noninteractive
variables (see Table 1). For this type of exercise, the
tutor/instructor must configure the experiment in
manual control, then allow the interactive variables to
be manipulated without any type of restrictions, and
finally, disable the controller panels.

• Which input signal has changed. The tutor/instructor
programs a sudden change in an input signal (prepro-
grammed event), and this variable will remain hidden
during the experiment. The user is advised that there
are x units of simulation time to observe the output of
the process and to discover which input has changed
and in what sense (increasing or decreasing). The
user is encouraged to make use of the qualitative ma-
trix obtained in the previous exercise and to analyze
the particular characteristics of each of the changes.
To configure this exercise, the tutor/instructor must
disable the panels of the interactive variables and the
panels of the controllers.

Manual Control
In this type of exercise, the student practices with the plant
using the controller in manual mode. The tutor/instructor

12 IEEE Control Systems Magazine April 2002

Description of an Experiment
Goal: Student must establish knowledge of the role of

feedback in a control system.
Description: In this exercise, the controller is in automatic
mode and has to compensate for adjustments to the tem-
perature set point. The controller set point must be modi-
fied and the student must observe, during 120 minutes of
simulation time, how the controller is compensating for

the temperature error and trying to reach the set point. To
simplify the system, in this exercise, there are no distur-

bances in any variable.
—Process variable: Output temperature of the fluid.

—Control signal: Steam valve opening.
—Disturbances: None.

Figure 7. Browsing window.

configures the controller beforehand to preclude the possi-
bility of changing the control mode. Some exercises of this
type are the following.

• Control on your own. The tutor/instructor programs a
disturbance in an input variable, and the student is ad-
vised that there are x units of simulation time to coun-
teract the disturbance by means of opening or closing
the valves. As in the previous case, the user is un-
aware of the disturbed variable and can only see its ef-
fect on the system. A sizable battery of exercises can
be created by simultaneously preprogramming the
modification of other process signals and varying the
number of changes.

• What control action should be used? The user is re-
quested to analyze the behavior of the process to de-
termine what action type (direct or inverse)
corresponds to the controller. The following is a spe-
cific example for the heat exchanger: The tutor/in-
structor preprograms an increase in the opening of
the valve that regulates the incoming steam and pro-
duces an increase of the output temperature; there-
fore, the output temperature deviates above the set
point. For a controller to counteract this deviation,
the action to take would be to decrease the valve
opening until the original value is recovered (i.e., di-
rect action).

Automatic Control

In this case, the tutor/instructor preprograms the experi-
ments so that the user cannot put the controller in manual
mode if the behavior of the process is not appropriate.
These exercises force the student to change the propor-
tional-integral-derivative (PID) parameters according to the
background acquired in the previous experiments. The fol-
lowing activities are proposed.

• Understanding the regulation action. The experiment is
started with the controllers in automatic mode, and
the user is requested to make individual changes in all
the interactive variables (except the set points) and to
observe whether the controller is able to counteract
these actions with its current parameters. The stu-
dent is also requested to use these observations for
completing a qualitative matrix of the stationary state
of the control system.

• Understanding the servo action. The experiment is
started with the controller in automatic mode, and the
user is advised to carry out modifications in the set
point and to observe whether the controller is able to
make the process variables reach the new set point.

• Basic actions with the PID controller. These exercises
are focused on the basic control actions: propor-
tional, integral, and derivative. Initially, the tutor/in-
structor tunes the controller in automatic mode and

with P, PI, or PID control. The student is asked to make
a change in the interactive variables, observing
whether the controller is able to counteract these dis-
turbances with its current parameters. Subsequently,
the student is requested to remove the disturbances
in order to return to the initial state, to change some
PID parameters, and to change the input variables,
producing new disturbances.

• Tuning the controller parameters. The tutor/instructor
can suggest many exercises of this type to take advan-
tage of the environment’s characteristics. The follow-
ing are generic descriptions of two alternatives. 1) The
controller is preprogrammed with somewhat inappro-
priate parameters, and the user is requested to intro-
duce changes in the interactive variables and to
observe the behavior of the system. 2) The user is re-
quested to remove the disturbances to return the sys-
tem to the initial stationary state and, after that, to
tune the controller parameters in a way that he or she
believes will improve the behavior of the control sys-
tem; the experiment must be repeated to obtain good
control parameters.

• Analysis of actuator limitations. For exercises in this
category, the student carries out changes in the inter-
active variables and observes whether there is satura-
tion in the control signals. The goal is to understand
that certain control objectives cannot be obtained in
the real world due to the physical limitations of the
process components.

• Study of the operating range. This group of exercises in-
cludes experiments similar to those in the previous
category. In this case, the goal is for the student to dis-
cover the operating range of any plant and to recog-
nize that its control system is always limited.

Some of the previous examples are carried out with one
PID controller in manual or automatic mode (see Figs. 3 and
5). In addition, the tutor/instructor can propose exercises in
advanced control using two PID controllers (for example,
the heat exchanger with cascade control) and other ele-
ments (e.g., ratio and feedforward compensation), as oc-
curs in distillation columns.

System Evaluation
Currently, the environment is used by a group of automatic
control students at our university as a complementary ac-
tivity to their on-site laboratory work. After working at
home with the system, the students must attend the lab and
perform the actual basic control experiments using tanks,
pendulums, and dc motors. Compared to students who do
not use the environment, the analytical skills and perfor-
mance of those who do are superior during the design and
tuning phase with the actual systems. Students who practice
at home perform better on exams and compose well-rea-

April 2002 IEEE Control Systems Magazine 13

14 IEEE Control Systems Magazine April 2002

soned commentaries, improving their laboratory evaluation
scores.

The results are very satisfactory, since students acquire
a new qualitative and practical view of their theoretical
knowledge. In addition, by working with the experimenta-
tion environment, students know in advance the behavior
and reactions of the scale plants and thus shorten their
preparation time at the lab.

Even after completing the required practical exercises,
many students continue using the experimentation environ-
ment in their homes to extend their practical skills and rein-
force their theoretical knowledge. In fact, almost all of the
students are generating their own files of parameters, and
one student has completed nearly 100 experiments.

Elements Used to Construct the Environment
The environment consists of two perfectly differentiated
parts (see Fig. 8):

• A GUI to both browse for a particular experiment and
to interoperate with typical control systems labora-
tory objects. Basically, the GUI is composed of build-
ing blocks that outline certain industrial elements
(plants, controllers, pipes, valves, etc.), panels for
tuning of the controllers and other process variables,
preprogrammed events, plus several scopes showing
the changes in the parameters during the simulation
stage. This GUI was developed in Java as an applica-
tion, but it can be easily transformed into an applet.

• A mathematical engine in which the simulation of cer-
tain industrial plants is executed. Since the whole en-
vironment is intended for teaching and training, it is
possible to configure the models entirely by means of
files of parameters. In this way, goals can be defined
for the students to reach by manipulating the controls
the model presents via the experimentation GUI. The
simulated plants and problems include: heat
exchanger with basic control, heat exchanger with
cascade control, level control of a tank, basic and ad-

vanced control of a distillation
column, and position and bal-
ance control of an inverted
pendulum.
An advantage of our approach

is the strict separation between
the GUI and the simulation en-
gine. It allows the developed code
to be reused and a clear inde-
pendence from the math engine
to be maintained [19]. Thus, the
experimentation environment is
not dependent on the math en-
gine and can be replaced with an-

other one. There are two reasons for such a decision:

• The porting of the virtual laboratory from a stand-
alone experimentation framework to an Internet-
based multiuser environment, considerably minimiz-
ing the development effort. Since the communication
between the interface and the calculation engine is a
Java class wrapping a native protocol of the operating
system, replacing that native class with a new one us-
ing standard sockets will be sufficient to move the
math engine (in this case, MATLAB 5.x and Simulink)
to a remote UNIX/Linux machine. Obviously, this new
Java class must have the same interface (i.e., the sig-
nature of the methods). Using this strategy makes
such a change transparent to the rest of the software
comprising the experimentation interface, since the
object interface is maintained, avoiding the need to re-
program a large part of the Java code.

• Separation of the experimentation GUI from the nu-
merical environment, allowing trainers to use other
modeling and simulation tools such as ECOSim [20],
ACSL [21], SCILab, and SCICOS [22], or even general
programming languages such as C or Fortran. The use
of other math engines does not require that the inter-
face between the experimentation GUI and the math
engine be changed, given the independence of the un-
derlying protocol for data exchange (ActiveX, DDE,
sockets). That is, the signature or interface of the
methods in charge of the communication process
must be maintained, with the selected math engine
and communication protocol replacing the inner code
of the methods.

To maintain this separation, it was inadvisable to de-
velop the experimentation interface using the MATLAB GUI.
Furthermore, this separation between the Java GUI and the
math engine is the first step in extending the local environ-
ment (stand-alone application) to a Web-based one (experi-
mentation applets dialoging with a remote math engine),
and even to an Internet-based one in which the simulation is
replaced by a laboratory-scale plant, without having to

Simulation Engine

MATLAB Files
Simulink Models

Result Files

Experiment Files

Navigation
Structure File

Graphical User Interface

Navigation
Window

Experimentation
Window

Communication Protocol
(ActiveX, TCP/IP, DDE)

User Actions,
Simulation Results

Figure 8. Outline of the virtual laboratory.

make important changes to the internals of the experimen-
tation GUI. Thus, it is possible to have several kinds of exper-
imentation environments that are independent of the
underlying object (local simulation, remote simulation, or
physical systems).

Software Tools
The software tools can be grouped into two categories (one
for each of the two elements that comprise the environ-
ment): the GUI and the simulation engine. For the first ele-
ment, Java has been chosen among all the programming
languages for the following reasons [23], [24]:

• The possibility of developing applications and ap-
plets, as well as the simple process of converting one
into another. This characteristic allows porting of the
stand-alone experimentation system to the window of
a Web browser, transforming the environment into a
distributed system on a TCP/IP network.

• Its orientation to the Internet and its APIs for distrib-
uted computing based on the client/server architec-
ture [25].

• Its object orientation, which offers all the benefits of
this paradigm.

• Its portability, which allows Java applets and applica-
tions to be run on any platform that has a Java virtual
machine.

• The possibility of extending it with other lower-level
programming languages. Using the Java native inter-
face (JNI), it is easy to develop C libraries for access-
ing peripheral devices (data acquisition boards,
communication ports, sound cards, etc.) or for pro-
gramming of real-time systems (e.g., control of plants,
interrupt routines).

MATLAB and Simulink are the math and simulation en-
gines. One reason is that both tools can be considered de
facto standards in the field of automatic control and simula-
tion, but there are other reasons as well:

• The large variety of operating systems on which
MATLAB can be used: Windows, MacOS, Solaris, Linux,
HP-UX. This characteristic allows the Simulink model
to be ported directly from one system to another.

• Availability of a student version of both tools. All the
simulations in the virtual laboratory have been car-
ried out using these versions, maximizing the distribu-
tion of the environment among students [26].

• MATLAB’s interfaces with external languages. Among
the various possibilities, we can highlight the integra-
tion with Microsoft ActiveX or the use of the C library
engine.h for using MATLAB as a numerical engine from
other languages and platforms [27].

In the case of Microsoft ActiveX, MATLAB supports the
Automation protocol so that it can be self-controlled and
can also control other components that support ActiveX.

When MATLAB is controlled by another component, known
as the client, it is said to be a server, and when it controls an-
other component, MATLAB becomes the client and the
other component becomes the server. In this case, MATLAB
is working as a server so that it can be controlled by the Java
code in the experimentation interface.

Despite the large number of development tools in Java,
ranging from commercial tools to those in the public domain,
we chose the Microsoft Visual Java++ environment (MSVJ++).
This choice was motivated by the possibility of interconnect-
ing the Java code with MATLAB, thanks to the support for
ActiveX provided by the Microsoft environment.

Porting from the Local to a
Web-Based Simulation Environment
As stated earlier, the environment architecture is based on
the model-view-controller (MVC) paradigm. The philosophy
of this paradigm is that interactive simulations must be
composed of three different parts: the representation of the
application domain (the plant model), the GUI (the view),
and the specification of the user’s actions (the controller).
In the local experimentation environment, the separation is
clear: the models are defined using the MATLAB/Simulink
files, the GUI developed in Java is completely independent
of the model, and the controller for the user’s actions is im-
plicit in the experimentation GUI, through which the behav-
ior of elements can be defined with experimentation files.

With the separation among the model, the view, and the
controller, the steps for porting the local environment to a
Web-based client-server architecture were as follows:

1) Conversion of the Java application into an applet. The
Java application that defines the experimentation GUI
was converted into a single applet, called the experi-
mentation applet.

2) Replacement of the ActiveX communication channel by
TCP sockets. The ActiveX-based class was replaced
with a new class based on TCP sockets. As in the for-
mer class, this new class has the same interface and
methods for sending MATLAB/Simulink commands to
the remote server to evaluate them and return the re-
sults to the client (the experimentation applet).

3) Building a concurrent server, called IV-Lab (Internet Vir-
tual Lab), to listen to user requests. Because the
MATLAB/Simulink environment running on UNIX/
Linux has no implicit mechanisms for establishing
connections via sockets [27], the IV-Lab server was
designed using C code and the MATLAB API. Thus, for
each new user connection (experimentation applet),
the server forks a new child process (user process)
and pipes it to a new MATLAB/Simulink environment.
This user process simply sends the requests of its as-
sociated experimentation applet to its MATLAB/
Simulink workspace, and vice versa, and the results of

April 2002 IEEE Control Systems Magazine 15

evaluating the commands are returned to the experi-
mentation applet.

4) Establishment of supervision capabilities. A new super-
vision applet has been created for the Web-based envi-

ronment to control the activities
that take place at the child pro-
cesses: connection time, experi-
ment type, commands received,
results returned, and the like.
Thus, the tutor/instructor can in-
form the students of any changes
in the work plan or can stop an ex-
periment if any malfunction is ob-
served.

Using the Web-based environ-
ment, several students are able to
practice simultaneously through
the network with new experi-
ments and models that the tu-
tor/instructor includes in the
server, without having to run
MATLAB/Simulink on their own
PCs.

Fig. 9 shows the communica-
tion interface between MATLAB
and the IV-Lab server using the
MATLAB engine library, called en-
gine.h [27]. An outline of the code

for a child process is summarized in the panel titled “Outline of
the User Process Code”; note that the exchange of information
between the experimentation applet and the calculation envi-
ronment is dynamic and continuous.

16 IEEE Control Systems Magazine April 2002

Outline of the User Process Code
#include “engine.h”

#define MAXLONG 1024

.......

.......

user_process (int user_socket) {

Engine *matlab; // startup Matlab engine

char result [MAXLONG]; // buffer to store Matlab text outputs

char command[MAXLONG]; // buffer to store received commands

engOutputBuffer (matlab, result, MAXLONG); // create the buffer

for (; ;) { // loop

.......

n = readline(user_socket, command, MAXLONG); // read applet command

engEvalString (matlab, command); // execute the Matlab command

send (user_socket, result, strlen(result),0); // send result to the applet

.......

}

Figure 9. Web-based simulation environment.

Another way to design the
server is to use applications de-
veloped in PERL to access
MATLAB and the standard CGI in-
terface for the exchange of pa-
rameters and data between the
cl ient and the ser ver. The
MATLAB Web Server software is
similar to that of ActiveX [28].
Both solutions are suitable for
environments with pseudo-on-
line or batch simulations: the
user reads an exercise in an
HTML page, fills in a form with
the parameters, sends it to the
server, and the results are returned as data or graphics
[29]; and if the student wants to carry out another experi-
ment with new parameters, these actions must be repeated.
Because the Web-based environment is based on dynamic
and online simulations, the PERL- and CGI-based ap-
proaches have been rejected because of their slowness and
static character. Instead, we have employed the MATLAB
API for communication with MATLAB and sockets for the
data exchange. The use of TCP sockets between the ap-
plets and the server and C routines to communicate with
MATLAB provides a highly flexible solution. Data transmis-
sion to the experimentation applet is carried out in a con-
tinuous and sustained way, without the need for
continually starting up CGI routines.

Although no tool is currently available for coping with de-
lays on the Internet, the use of this network is still consid-
ered the best solution. To improve real-time access for our
university students, the Web-based experimentation envi-
ronment will be connected by ISDN with the various UNED
support centers around Spain. In addition, since the server
machine must manage a heavy workload when several stu-
dents are practicing at the same time (i.e., with several math
engines running concurrently), we have acquired a Linux
box with Pentium III Xeon processors, and use of a high-
speed network with 16 Linux systems running
MATLAB/Simulink will be tested in the future.

Additional Goals
At present, we are developing a new GUI with two goals in
mind: 1) to help the instructor/tutor configure the browsing
component by means of the hyperindex contents, and 2) to
develop new experiments. In this way, the instructors will
not need to know the description syntax of the experiment
files and can focus on the design of new experiments. In ad-
dition, we are developing new models of plants and new ex-
ercises (dc motor, magnetic levitator, etc.) focused on the
academic world. An analysis tool will also be added to the

environment for analyzing the log of events and actions,
avoiding the use of external software.

The software described herein is currently not available
to the public because it was developed in a research and de-
velopment project for a petrochemical company (see Ac-
knowledgments). The present agreement allows only
students at our university to use the environment when they
enroll for an automatic control course. Future plans are to
obtain permission to distribute to our students a
stand-alone release on a CD-ROM and to install an HTTP
server to allow everyone free access to the Web-based ex-
perimentation environment. For information about the soft-
ware’s future availability, readers can e-mail the authors.

Using the GUI and the ideas developed to date, our cur-
rent goal is the real-time operation of educational plants
(water tanks, heat exchangers, and an inverted pendulum)
through the Internet to provide a remote lab with
24-hour-a-day access. In both cases, MATLAB/Simulink,
Java, and C++ will provide the links, closing the loop be-
tween the experimental hardware and the applets.

The use of video and audio is being considered as an-
other way of collecting data from industrial processes.
Consequently, and as a complement to the 24-hour-a-day
access, we are developing the hardware and a set of applets
and applications for the remote control of a system com-
posed of a video camera with tilt, focus, pan, and shutter
speed.

Acknowledgments
The software described here has its origin in a project be-
tween REPSOL-YPF (the largest Spanish petrochemical com-
pany) and the UNED Department of Computer Science and
Automatic Control. The aim of the project was to create a set
of educational materials for the training of operators with-
out a deep knowledge of mathematics. We gratefully ac-
knowledge the support and ideas of the REPSOL-YPF team:
J. Acedo, D. Hergueta, F. Cifuentes, and R. González
(PETRONOR).

April 2002 IEEE Control Systems Magazine 17

Simulink (sim_ini file)

Read
v_in

Simulate

Write
v_out

Experimentation GUI MATLAB Workspace

A
c
t
i
v
e
X

f_ini
Evaluation

(......)

(t,......)

v_in

v_out

v_out

v_init

v_in Modified by
the User through

the GUI

Model’s
Parameters

Initial
v_in

Figure 10. Data interchange between the Java interface and MATLAB/Simulink.

References
[1] B. Aktan, C.A. Bohus, L.A. Crowl, and M.H. Shor, “Distance learning applied
to control engineering laboratories,” IEEE Trans. Educ., vol. 39, no. 3, pp.
320-326, 1996.

[2] S.E. Poindexter and B.S. Heck, “Using the Web in your courses: What can
you do? What should you do?” IEEE Contr. Syst. Mag., vol. 19, pp. 83-92, Feb.
1999.

[3] K. Maly, H. Abdel-Wahab, C.M. Overstreet, J.C. Wild, A.K. Gupta, A. Youssef,
E. Stoica, and E.S. Al-Shaer, “Interactive distance learning over intranets,”
IEEE Internet Comput., vol. 1, no. 1, pp. 60-71, 1997.

[4] N.A. Kheir, K.J. Åström, D. Auslander, K.C. Cheok, G.F. Franklin, M. Masten,
and M. Rabins, “Control system engineering education,” Automatica, vol. 32,
no. 2, pp. 147-166, 1996.

[5] P. Antsaklis, T. Basar, R. DeCarlo, N. Harris, M. Spong, and S. Yurkovich,
“Report on the NSF/CSS workshop on new directions in control engineering
education,” IEEE Contr. Syst. Mag., vol. 19, pp. 53-58, Oct. 1999.

[6] J.B. Patton and P. Jayanetti, “The making of multimedia power systems
control and simulation labware,” IEEE Trans. Educ., vol. 39, no. 3, pp. 314-319,
1996 [Online]. Available: http://www.ece.gatech.edu/users/192/web-use

[7] Y. Piguet and D. Gillet, “Java-based remote experimentation for control al-
gorithms prototyping,” in Proc. Amer. Control Conf., San Diego, CA, 1997, pp.
1465-1469 [Online]. Available: http://iawww.epfl.ch/staff/Denis.Gillet/Publi-
cations/ACC99.pdf

[8] C. Schmid, “A remote laboratory using virtual reality on the Web,” Simula-
tion, vol. 73, no. 1, pp. 13-21, 1999.

[9] J. Sánchez, F. Morilla, S. Dormido, J. Aranda, and P. Ruipérez, “Conceptual
learning of control by Java-based simulations,” in Proc. IEEE/IFAC Symp. Ad-
vances in Control Education (ACE’2000), Gold Coast, Australia, 2000.

[10] D. Gillet, C. Salzmann, and P. Huguenin, “A distributed architecture for
teleoperation over the Internet with application to the remote control of an in-
verted pendulum,” in Proc. 2nd Nonlinear Control Network (NCN) Workshop,
Paris, France, 2000 [Online]. Available: http://iawww.epfl.ch/Staff/
Denis.Gillet/Publications/NCN2k.pdf

[11] T.F. Junge and C. Schmid, “Web-based experimentation using a labora-
tory-scale optical tracker,” in Proc. Amer. Control Conf. 2000 (ACC’2000), Chi-
cago, IL, 2000, pp. 3463-3467 [Online]. Available: ftp://ftp.esr.
ruhr-uni-bochum.de/pub/papers/acc2000RsvlPaper.pdf

[12] J.W. Overstreet and A. Tzes, “An Internet-based real-time control engi-
neering laboratory,” IEEE Contr. Syst. Mag., vol. 19, pp. 19-34, Oct. 1999.

[13] C. Schmid, “Remote experimentation techniques for teaching control en-
gineering,” in Proc. 4th Int. Scientific-Technical Conference PROCESS CONTROL
2000, Kouty nad Desnou, Czechoslovakia, 2000 [Online]. Available:
ftp://ftp.esr.ruhr-uni-bochum.de/pub/papers/Pardubice2000.pdf

[14] C.C. Ko, B.M. Chen, J. Chen, Y. Zhuang, and K.C. Tan, “Development of a
Web-based laboratory for control experiments on a coupled tank apparatus,”
IEEE Trans. Educ., vol. 44, no. 1, pp. 76-86, 2001.

[15] M. Johansson, M. Gäfvert, and K.J. Åström, “Interactive tools for educa-
tion in automatic control,” IEEE Contr. Syst. Mag., vol. 18, pp. 33-40, June 1998.

[16] B. Wittenmark, H. Haglund, and M. Johansson, “Dynamic pictures and in-
teractive learning,” IEEE Contr. Syst. Mag., vol. 18, pp. 26-32, June 1998.

[17] R.C. Garcia and B.S. Heck, “Enhancing classical control education via in-
teractive GUI design,” IEEE Contr. Syst. Mag., vol. 19, pp. 77-82, June 1999.

[18] TOPAS by ACT GmbH [Online]. Available: http://www.act-control.com/
topas.pdf

[19] S. Naryanan, N. Rao, J. Geist, P. Kiran, H.A. Ruff, M. Draper, and M.W. Haas,
“UMAST: A Web-based architecture for modeling future uninhabited aerial ve-
hicles,” Simulation, vol. 73, no. 1, pp. 29-39, 1999.

[20] ECOSimPro by EA International [Online]. Available: http://www.
empre.es/ecosim

[21] ACSL (Advanced Continuous Simulation Language) by Aegis Technol-
ogies Group, Inc. [Online]. Available: http://www.mga.com

[22] Scilab Group, Ed., Engineering and Scientific Computing with Scilab. Cam-
bridge, MA: Birkhauser Boston, 1999 [Online]. Available: http://www-rocq.
inria.fr/scilab

[23] M.A. Hamilton, “Java and the shift to net-centric computing,” IEEE Com-
puter, vol. 29, no. 8, pp. 31-39, 1996.

[24] J.L. Weber, Using Java 1.2. Indianapolis, IN: Que, 1998.

[25] S. Shirmhammadi, J.C. de Oliveira, and N.D. Georganas, “Applet-based
telecollaboration: A network-centric approach,” IEEE Multimedia, vol. 5, no. 2,
pp. 64-73, 1997.

[26] MATLAB Student Version by The MathWorks, Inc. [Online]. Available:
http://www.mathworks.com/products/studentversion/

[27] The MathWorks, Inc., MATLAB External Interfaces, 2001 [Online]. Available
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/apiext.pdf

[28] MATLAB Web Server by The Mathworks, Inc. [Online]. Available:
http://www.mathworks.com/products/webserver/

[29] G.J.C. Copinga, M.H.G. Verhaegen, and M.J.J.M. van de Ven, “Toward a
Web-based study support environment for teaching automatic control,” IEEE
Contr. Syst. Mag., vol. 20, pp. 8-19, Aug. 2000.

J. Sánchez received his M.S. degree in computer sciences in
1994 from the Polytechnic University of Madrid and his
Ph.D. from UNED in 2001. Since 1993, he has been working in
the UNED Department of Computer Sciences and Automatic
Control as an Assistant Professor. His current research inter-
ests are the design of new systems for control education, vir-
tual labs, telepresence, multimedia, and use of the Internet
in education.

F. Morilla received his degree in physics from the
Universidad de Sevilla in 1979 and his Ph.D. from UNED in
1987. In 1983, he joined the UNED Department of Computer
Sciences and Automatic Control, where he has worked as an
Assistant Professor, an Associate Professor, and since 1998
as a Full Professor of System Engineering and Automatic
Control. His current research interests include process
modeling, simulation and control, tuning and autotuning of
PID controllers, predictive control, and control education.

S. Dormido received his M.S. degree in physics from the
Universidad Complutense of Madrid (1968) and his Ph.D. de-
gree with a thesis on “Adaptive Sampling” from the Univer-
sity of the Basque Country, Spain, in 1971. In 1981, he was
appointed Full Professor of Control Engineering of the UNED
Faculty of Sciences. Since 1986, he has been Headmaster of
the UNED Department of Computer Sciences and Automatic
Control. His scientific activities cover various aspects
within the control engineering field: computer control of in-
dustrial processes, adaptive systems, model-based predic-
tive control, robust control, and modeling and simulation of
continuous processes.

J. Aranda received his M.S. degree in physics from the
Universidad Complutense of Madrid (1983) and his Ph.D. de-
gree from UNED in 1989. He joined UNED in 1987 as an Assis-
tant Professor, and since 1991 he has been a Senior
Professor. His current research interests include applica-
tions of hypertext and hypermedia systems to distance
teaching, robotic vision systems, and applications to ro-
botic control and flight control.

18 IEEE Control Systems Magazine April 2002

Appendix
Linking the Java Interface
and the MATLAB Workspace
In Windows, the communication between the experimenta-
tion interface and the calculation engine (i.e., between the
Java language and MATLAB) was carried out using the
ActiveX Automation protocol.

Using the MATLAB-type definition file called mlapp.tlb,
located in the folder of the MATLAB distribution code, a
group of Java classes and interfaces for wrapping the
ActiveX interface with MATLAB can be generated simply
and quickly from the MSVJ++ environment. The names of
these classes are DIMLApp.class and MLApp.class, and the
signatures of the available methods are:

public abstract void

MinimizeCommandWindow();

public abstract void

MaximizeCommandWindow();

public abstract void Quit();

public abstract void

GetFullMatrix(java.lang.String,,

.....);

public abstract void

PutFullMatrix(java.lang.String,,

.....);

public abstract java.lang.String Execute(

java.lang.String);

Thus, using the methods provided by these classes, the
Java code can communicate easily with the MATLAB
workspace. The most interesting of the methods is Execute
(...). With this method, any MATLAB command can be evalu-
ated in its workspace by means of its argument, and the re-
sults of the evaluation can be obtained in the string returned
by this method.

Once these new nonstandard classes have been generated
automatically with MSVJ++, the access to MATLAB/Simulink is
immediate. One need only create an instance of an object and
operate with it by means of the methods described earlier. In
Java code, the creation of an instance in a variable denomi-
nated matlab is carried out as follows:

import mlapp.*;

import com.ms.com.*;

...........................

DIMLApp matlab = (DIMLApp) new MLApp();

The peculiarity here is that the class that provides the
code with the methods for true access to MATLAB is MLApp,
whereas DIMLApp is a Java interface class that describes

the syntax or signature of the methods that need to be cre-
ated for accessing MATLAB through the ActiveX interface.
For this reason, the variable matlab, defined as an instance
of DIMLApp, is built by using the constructor of the MLApp
class, after which the unary operator cast is applied to make
an explicit conversion to the DIMLApp class.

To further describe the communication process between
the two environments, when the instance in the variable
matlab is created, MATLAB is opened as a server of the Auto-
mation protocol. At that point, it is already possible to com-
mand the numerical engine using some of the methods
described earlier. For example, to clean the MATLAB work-
space from the Java code, it would suffice to include the fol-
lowing sentence:

matlab.Execute (“clear all”);

To create a vector of five elements, the expression would be:

matlab.Execute (“v_out= [1, 2, 3, 4, 5]”);

or to obtain the value of the variable v_out created in the
previous example, the sentence would be:

String result = matlab.Execute (“v_out”);

Notice that after the operation, the information stored in re-
sult would be the same as if, explicitly by means of the key-
board, the vector v_out had been created and evaluated in
MATLAB.

Control of Simulink
Using the previous methods, total and direct control of
Simulink is possible. Since to achieve our goals it was neces-
sary to control different aspects of this simulation environ-
ment, a group of generic methods was created with this
objective in mind.

The methods that have been elaborated for the control of
Simulink are shown in detail below. Although the name of
each method is sufficiently significant, the functionality of
each is described briefly.

public void loadSimulinkModel (String

MODEL) {

matlab.Execute (“open_system (‘” +

MODEL + “’)”);

}

Once MATLAB is open, the above method accomplishes the
opening of Simulink and loads the file indicated in the pa-
rameter MODEL.

April 2002 IEEE Control Systems Magazine 19

public void startSimulink (String MODEL) {

matlab.Execute (“set_param(‘” + MODEL

+ “’,’SimulationCommand’,’Start’)”);

}

Using the above method, the simulation of the model indi-
cated by MODEL can begin.

public void stopSimulink (String MODEL) {

matlab.Execute (“set_param(‘” + MODEL +

“’,’SimulationCommand’,’Stop’)”);

}

The above method ends the simulation process of the
MODEL.

public void pauseSimulink (String MODEL) {

matlab.Execute (“set_param(‘” + MODEL

+ “’,’SimulationCommand’,’Pause’)”);

}

The above method causes the temporary suspension of the
simulation process of the MODEL.

public void continueSimulink (String MODEL)

{

matlab.Execute (“set_param(‘” + MODEL

+ “’,’SimulationCommand’,’Continue’)”);

}

This last method continues the simulation process of
MODEL after a suspension caused by the previous method.

These methods are associated with the buttons of the ex-
perimentation GUI, so that the user can tailor the evolution of
the experiment to his or her observation and analysis capac-
ity. Another use of these controls is to slow the simulation
speed by stopping the simulation. This way, students can ad-
just the simulation to a speed they consider appropriate.

Implementation of the Data Interchange
Between the Interface and MATLAB/Simulink
The interchange of information between the Java interface
and the simulation engine environments begins once the
Java application reads the parameters file. This file contains
all the parameters for configuring the experimentation in-
terface and the MATLAB workspace so that the student can
start the simulation process.

The necessary elements for configuring the MATLAB
workspace are (see Fig. 10):

• v_init Vector: The v_init vector is built with the infor-
mation in the parameters file and then sent from the

Java interface to the MATLAB workspace. This vector
includes all the parameters for configuring, a posteri-
ori, the Simulink model: physical parameters of the
plant, initial parameters and states of the controllers,
initial values of the input variables, sampling rate, etc.

• f_ini File: This MATLAB file uses the v_init vector to
evaluate a set of functions in the MATLAB workspace
to complete the configuration of the model. Although
the evaluation of this file produces several lateral ef-
fects, the most important result is the creation of a
v_in vector in the workspace that constitutes the
starting point of the simulation.

• v_in Vector: This vector gathers the values of the pres-
ent elements in the interface (input variables, control-
ler parameters) and transmits them to the simulation
process. Thus, it constitutes the linking element be-
tween the interface and Simulink. Initially, this vector
is constructed from the evaluation of the f_ini file.
From then on, the elements of this v_in vector will only
change when the user interacts with the GUI or a pre-
programmed event takes place.

• Model File (sim_ini file): This file contains the Simulink
model. Once the v_in vector has been built in the
MATLAB workspace, it will already be possible to be-
gin the simulation of the plant, represented by the
sim_ini file. This model will send a new v_out vector
toward the MATLAB workspace in each step of the
simulation.

• v_out Vector: The features of the simulation process in
Simulink are that in every sampling period, the model
reads the v_in vector of the MATLAB workspace, oper-
ates with it, and generates a new v_out vector. This
vector contains the state of the plant in that sampling
rate. The composition of the v_out vector does not
vary much from model to model: the first element is
time, and the remaining ones are the values of the out-
put variables in that sampling period. Therefore, the
values of the v_out vector are visualized in the inter-
face in every sampling period, showing the evolution
of the simulation.

It is important to note that the v_out vector is constantly
sent to the experimentation GUI, whereas the v_in vector is
only delivered to the MATLAB workspace in two cases:
when the user modifies a parameter or when some prepro-
grammed disturbance occurs. This minimizes the informa-
tion flow between both sides of the environment, which will
be a key feature when the local communication channel is
replaced with a TCP/IP connection.

20 IEEE Control Systems Magazine April 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

