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Abstract: This paper deals with the development and characterization of Dynamic
Programming Predictive Controllers (DPPC), advanced predictive controllers that make
use of dynamic programming to solve highly nonlinear / nonquadratic constrained control
problems. Some computational techniques to reduce the computational load are proposed,
and an application example, pH control, is analyzed using this new methodology.
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1. INTRODUCTION

Model Predictive Conirol (MPC) was developed during
the late 707s. Since then, it has increased its popularity
due to the important advantages that offers over other
control methods {De Keyser, 1992).

From a mathematical point of view, MPC is not but a
constrained optimization problem that can be usually
solved as a quadratic programming (QP) problem: when
the process model is linear, the objective function is
quadratic and the constraints arc linear.

Dynamic Programming (DP), bused on Bellman's
Principie of Optimality (Bellman, 1957). is a very general
optimization tool, more powcerful than QP. Making use of
DP, it is possible to develop new types of predictive
controllers with more general and highly nonlinear
models and constrains, and nonquadratic  objective
functions (the latter is important, as Chow, et al. (1995)

have shown that the use of multiple models in predictive
control leads to a cost function that is not quadratic).

The main aim of this paper 1s to introduce a predictive
controller based on DP. In section 2 predictive controllers
are introduced, paying special attention to their
formulation as constrained optimization problems.
Section 3 deals with dynamic programming. The main
drawback of DP is its extremely high computational
complexity, so, section 4 stud:es some important methods
for the reduction of the complexity. In section 5 the
predictive controller based on dynamic programming is
developed. Finally, in section & a highly nonlinear control
problem is solved: the pH conrrol.

2. MODEL PREDICTIVE CONTROL

All predictive controllers share a common key
characteristic: they make use of a model of the process to
obtain the control signal by minimizing a given cost
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function. The MPC-methodology is defined by the
following strategy (Clarke, et al., 1987; De Keyser, 1992;
Camacho and Bordéns, 1995): the optimal future control
signal, Au’, is obtained in such a way it minimizes a
given cost function of the predicied future errors,
[#(z+klE) p(e+kIDY), uver a long time prediction horizon N,

s aalele) ... dulr + N, ~ 1]e)t) =
Na 2
=E Zy(j)[r(z+j|r)—y(:+j|:)] +
=N
NH
Au _
+Zk(;)[ (t+j 1|r] 0
subject t© Am(r+-1)=0,N+1 <j<N, where E()

stands for expected value, as predictions are made based
on the information available at the instant t. y(r+klr),
k=1,2, .. N, are the predicted oulputs of the process,
based on the process model. r{r+klr) is a reference
trajectory, describing how the current process output, y(£),
should tend to the —predicted— future setpoint, wir+kle).
The first element of the optimal control vector, Au’(tlr), is
actually applied to the process. At the next sampling
instant a nmew output measurement y(#4+1) is obtained,
which is generally different to the pl’E:dlCT.ed value y(r+1lr).
Therefore all the other elements of & are forgotten, all
the sequences are shifted and the whole procedure is
repeated. This is called a receding horizon strategy.

In the absence of constraints, it is possible to obtain the
solution of the minimization problem in closed form. But
inequality constraints appear in real control problems and
the solution has to be obtained numerically.

Most predictive controllers are based on linear models
(including the dynamics of the disturbances), quadratic
cost functions and linear constraints. In this case, the
optimization problern has the general expression

x" =argmin (%xrﬂr +GTx)

subjectto Ax<bh (2)

where x is the manipulated variable (& or Aw), ¥ is the
optimal solution, H is the Hessian matrix and G is the
gradient vector. This problem is known as guadratic
programming, for which there exists a deep theoretical
and practical background.

Whenever the models are nonlinear (a more realistic
situation), the cost function is non-quadratic, or the
constraints arc nonlinear, the optimization cannot be
solved as a quadratic programming problem. It does not
exist a general theory for such nonlinear / non-quadratic
predictive controllers. For them, @d #hoc pumerical
methods have w be used, or the problem has to be
linearized.

3. DYNAMIC PROGRAMMING
3.1.  Backward Dynamic Programming
Dynamic Programming (DP) is an analytic tool created to
solve a set of optimization problems known as multistage
decision processes. One of the most important ones is as

follows (Larson and Casti, 1978):

Minimize {(maximize) the separable cost {(performance)
function

- 3 UR)u(k).8)

k=0 (3}
where
x(k+1) = g(x(k).ulk), k) @
subject to
x e X(k) =R, ueU(x(k),k]cSR"’ 5
000

In this problem, x is the state variable, u is the decision
or control variable and k is the stage.

Defining:

I(x, k)=

wlk)ul k+l]

{ZL(-‘(J ul ), )} ©

and based on Bellman’s Principle of Optimality (Bellman,
1957; Larson and Casti, 1978), it is possible to prove that:

Wx, &)= muin{L(x,u,.()+l[g(x.u,k),k+l]}

I(x,N)=g(l}g]'{L(r:“(N),N)} (7
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Fig. 1. BDP computational procedure

This iterative functional equation can be solved
numerically. To do so, the scts of admissible states, X,
and decisions, U, have to be quantified to a finite number
of values

X ={xl,x1,...,x”’x}
U={u'n

{

defining a computational grid;, M, and M, can bhe
different at each stage k. For all the stages &, and for all
the quantified states x'(k), the quantity inside the braces in
(7) is evaluated for each u € U, and these values arc
compated to determine the smallest one (fig. 1). The
control & that produces the smallest cost is the optirmum
control #” for x(kI al stage k. In order to evaluate
I[g(x, u, k), k+1], when g(x, &, &) is not a quantified state,
an interpolation algorithm can be used. Starting at stage
N, this procedure is applied backwardly, towards stage 1.
Thus, this method is called Backward Dynamic
Programming (BDP).

2,...,u““} (8)

One of the most important properties of this method is
that constraints of a very general nature can be handled,
and they actually reduce the computational effort rather
than increase it, as they reduce the number of admissible
controls and states to be evaluated.

BDP always delermines an absolute minimurn, within the
accuracy of the computational grid. The optimal initial

and final states are determined by BDP, if they arc not
defined in advance.

The main drawback of this method is a very high
computational complexity: although the constraints
actually reduce the number of trajectories that must be
considered, the number of computations is still too high.
Furthermore, it can be proved (Guignabodet, 1961, 1963}
that the only way to oMain an accurate solution is to
increase the number of quantified controls and states, not
just arbitrarily increase the order of the interpolation
procedure.

3.2.  Farward Dynamic Programming

It is possible to obtain a different functional equation that
can be solved forwardly. The minimum cost function T'
(Larson and Casti, 1978) is delined as

I'(x.k)=u((}l%ﬁu_]#ZL(x(j),u(j)-j)} ©

=0
Then, the iterative functional equation becomes:

I‘(x,k) = mjn{[{g"'(r,u,k—l),u,k—l]+

+I'[g“'(x,u,k—1),k-1]} (10)

where g[g ' [x(k+1), a(k), k], uk), k] = x(k+1).

This method, called forward dynamic programming
(FDP), has the same propertiecs and computational
complexity that BDP, and is specially useful when the
initial state is defined in advance.

4. REDUCTION OF DIMENSIONALITY

In order to obtain an accurate solution, the siep of the
computational grid has to be small, but then the
computational complexity of dynamic programming is
extremely high. There exist some methods to reduce it,
making possible to apply dynamic programming to some
interesting problems of the real world.

4.1, Special partitions

Nonuniform partitions. The step size is smaller in those
regions of the state space and/or the control space where
more precision is needed (Moreno, ef al., 1992; Moreno,
et al., 1994; P. de Madrid, ¢t al, 1994; P. de Madrid,
1995).
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Coarse partitions. A coarse partition of the slate space is
initially used (Bellman and Dreyfus, 1962; P. de Madrid,
1995). Once the solution has been obtained, it is defined a
band around it, where a new smaller partition is defined.
Then a new DP problem is solved in this band, and all the
procedure is repeated until the desired grid size is
reached. The main drawback of this method is that a local
optimurn can be obtained if the initial grid is too coarse.

4.2, Nominal trajectories

If a good nominal initial solution is available, it can be
used in two different ways 10 reduce the computational
complexity:

Direct iteration. If the initial stale x; is defined, a
nominal solution, starting from x,, is postulated. The DP
problem is only solved in a band around the postulated
solution. This method can be combined with the coarse
partitions method.

Successive approximations in the state space. Let
consider a problern with as many state variables as control
variables (n =m) (Bellman and Dreytus, 1962; Larson,
1968; Korsak and Larson, 197(}; Larson and Korsak,
1970, Cooper and Cooper, 1981; Larson and Casti, 1982).
Let {x"(k)} be the nominal solution. One of the # state
variables is sclected. x,, and a DP problem is solved, in
such a way that [xl.w'(k), i # i, } does not change. It means
that there exist (n - 1) equality constraints in the control
variables, and therelore the problem has only one degree
of freedom. The solution of this problem generales a new
nominal trajectory, {x'"(k)}. Then a new state variable is
selected, x,,, and the method is repeated. This is done for
all the » state variables. Then the method is repeated,
until it converges to the same solution for all the state
variables.

This method reduces the complexity to linear, and can be
generalized for the general case (n # m). Bul convergence
to the true optimum (even to a local one) can be only
guaranteed for a few cases.

4.3, System dynamics

Convexity of the set of admissible controls. If the system
equations are linear and the set of admissible states for
each stage is convex, then the set of admissible controls
for each state for each stage is convex (Ruipéregz, 1977, P.
de Madrid, 1995). This can be used to reduce the number
of admissible controls to test: if u' and u® are the
minimum and maximum  admissible  controls,
respectively, and the system equations are linear, then the

oplimal control #’ must verify u' <u” <4’ and thus the
number of quantified controls to test for each state is
reduced.

Limit trajectories and reachable states. If the initial state
x(0) is defined, it is possible to bound a region in the state
space by means of the limir trajectories: those state space
trajectories obtained applying the extreme controls to the
system equations. The only states (o explore, the
reachable states, are confined in the region defined by
these trajectories (Dormido, ef af., 1970). If the final state
x(N) is defined, this region can be reduced even more.

5. DYNAMIC PROGRAMMING PREDICTIVE
CONTROL

The application of DP to process control is not a new
subject. In fact, some optimum control problems can be
expressed in terms of a Bellman's equation, that can be
solved analyiically when the systemm is linear, the
objective function is linear or quadratic, the stochastic
variables are (Gaussian and there are no constraints
(Larson and Casti, 1982; Pierre, 1986; Mosca, 1925). But
most problems can be only solved numerically.

Current MPCs make use of linear systems and constraints
and quadratic cost functions, due to the limitations of QP
algorithms, But QP can be considered a subset of DP
problems. So, it is possible to develop a predictive
controller based on DP.

P. de Madrid (1993) proposes a general DPPC algorithm.
This is a hybrid one —combining BDP and FDP— with
no interpolation, optimized for MPC. It makes use of the
techniques described in section 4, in such a way the
comnputational cost is dramatically reduced, and can be
casily generalized to include interpolation.

6. APPLICATION EXAMPLE: pH CONTROL

pH contro! presents difticulties due to large variations in
process dynamics. pH is a measure of hydrogen ions H' in

a solution, and is defined by pH =-log[H'], where []
stands for concentration. Let consider the neutralization
of a strong acid-base pair, as it is proposed in (Astrom
and Witlenmark, 1989). A strong acid effluent is fed to a
tank with volume V {I); the acid concentration in the
influent stream is ¢, (mol/1) and its flow is g (I/s). The
acid is neutralized with a strong base of concentration ¢,
(mol/) and flow u (I/s}). Let x, and x, he the
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Fig. 2. Titration curve for (12)

concentrations of acid and base in the tank. The system
dynamics is then given by

dx q

—'d: =7(C.4 - )“n}

dxy _ g

@ vy (n

and the pH is given by

‘T2
X0 x
pH(x)=—log .‘}—+ K,-=
! . 4 2 (12)

where x = x, - x, and K,, = 107 (mol/1)’ at 25°C.

The dynamics of the pH sensor and the pump will be
modeled as Ffirst order transfer functions with time
constant T,

Astrom and Wittenmark (1989) show that, assuming
proportional contral, the critical gain varies drastically —
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Fig. 3. PI performance: pH control {top) and concentration
control (bottom). pH_¢ is 8 {a), & (b) and 10 (c)
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Fig. 4. DPPC performance. pH_;is 8 (a), 9 (b) and 10 (c)

several orders of magnitude, see fig. 2— for differemt
values of the reference pH. The difficulties are
compounded by the presence of time delays and flow
variations,

Figure 3 (top) shows this situation: assuming V= 1000 |,
g=1000 Vs, ¢, = 10" mol/l, ¢, =1 mol/l, t=0.I sand a
sampling period of T7=0.03 5, a PI (or PIDY) controller
that has been tuned for a given setpoint (10) has a
degraded performance for a dillerent one, and can become
unstable. Equation (11) shows that the system depends
linearly on the concentrations. so performance is better if
concentration is controlled instead of pH. In this case (fig.
3, bottom), the same PI can control the three diflerent
setpoints, but the system response degrades quickly.

DPPCs can handle this situation in a natural way. Figure
4 shows the DPPC performance under the same operation
conditions assumed in fig. 3. ¥, N, N, and A have been
set to 1, 1, 10 and 0, respectively, with a control grid of
0.0025 and u,, = 0.3 mol/l. The control signal has been
filtered 10 eliminate the possible oscillations induced by
the quantified values of the wvariables. The main
advantages are:

¢ The system has not to be linearized. The real system
dynamics is taken into account, as a nonlinear model
1s considered.

e DPPC can control several setpoints with a single
tuning. For all of them the system output is good and
stable, and much faster than the PI response.
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7. CONCLUSION

This paper has introduced DPPCs, advanced predictive
controllers that make use of dynamic programming to
solve highly nonlinear / nonquadratic constrained control
problems. Computational techniques have been proposed
to reduce the computational load. Nowadays, real time
applications are only available for slow processes, with
sampling periods between several seconds to several
minutes  (typical  industrial  processes).  Futurc
computational advances (laster compuiers,
multiprocessors and parallel algorithms) will make new
applications come true.

The application example, pH control, has shown how it is
possible to work with the exact nonlinear equations. As
the nonlinear model lakes into account all the complex
system dynamics, the performance of the DPPC controller
is much better.

& ACKNOWLEDGMENTS

The authors wish to acknowledge the economical support
of the Spanish CICYT, under grant Ref. TAP 95-0790.

9. REFERENCES

Astrom, K. J. and B. Wittecnmark (1989). Adaptive
control. Addison-Wesley, Reading, MA,

Bellman, R. E. {1957). Dyramic programming. Princeton
University Press, New Jersey.

Bellman, R. E. and S. E. Dreyfus (1962). Applied
dvnamic programnting. Princeton University Press,
New Jersey.

Camacho, EE. F. and C. Borddns (1995). Model predictive
control in the process industry. Springer-Verlag,
New York.

Chow, C.-M., A. G. Kuznetsow and D, W. Clarke (1995).
Using multiple models in predictive control. Proc.
of 3rd European Control Conference, 1732-1737.
Rome.

Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987).
Generalized predictive control. Part 1. The basic
algorithm. Automatica, 23, 137-148.

Cooper, L. and M. W. Cooper (1981). Introduction to
dynamic programming. Pergamon Press, Oxford.

De Keyser, R. M. C. (1992). The MPC Methodology.
Intensive  Training Course on  Model Based
Predictive Control. UN.E.D., Madrid.

Dormido, S., M. Mellado and J. M. Guillen (1970}
Consideraciones sobre la regulacion de sistemas
mediante  técnicas de  programacién  dindmica.

Revista de Automdtica. 10, 29-34. Madrid. (In
Spanish)

Guignabodet, 1. J. G. (1961). Analysis of some process
control aspects of dynamic programming. Ph. D.
Thesis. Washington University.

Guignabodet, 1. J. G. (1963). Dynamic programming:
cumulative errors in the evalvation of an optimal
policy. J. Basic Eng., June, 151-156.

Korsak, A. J. and R. E. Larson (1970). A dynamic
programuming successive approximations technique
with convergence proofs. Part . Automatica, 6,

253-260.

Larson, R, E. (1968} State increment dynamic
programming. American  Elsevier Publishing
Company, Inc., New York.

Larson, R. E. and A. J. Korsak (1970). A dynamic
programming successive approximations technique
with convergence proofs. Part 1. Automatica, 6, 245-
252,

Larson, R. E, and J. L. Casti (1978). Principles of
dynamic programming. Part I: Basic analytic and
computational methods. Marcel Dekker, Inc., New
York.

Larson, R. E. and J. L. Casti (1982). Principles of
dynamic programming. Part 1I: Advanced theory
and applications. Marcel Dekker, Inc., New York.

Moreno, L., L. Acosta and I. L. Sdnchez {1992). Dcsign
of algorithms for spacial-time reduction complexity
of dynamic programming. [EE Prec.-D, 139, 172-
(80

Moreno, L., L. Acosta, A. Hamilton, J. A, Méndez, J. L.
Sdnchez and J. D. Pificiro (1994). Dynamic
programming approach for nonlinear systems. IEE
Proc.-Cont. Th. Appl., 141, 409-417.

Mosca, E. (1995). Optimal, predictive and adaptive
control. Prentice Hall, New Jersey.

P. de Madrid, A., M. Santos, S. Dommido and F. Morilla
(1994). Constrained generalized predictive control
with dynamic programnming. In: Advances in
Model-Based Predictive Control (D. W. Clarke,
Ed.), 276-290. Oxford University Press, Oxford.

P. de Madrid, A. (1995). Aplicacidn de técnicas de
programacion dindmica a control predictive basado
en modelos. Ph. D. Thesis. UN.E.D., Madrid, (In
Spanish)

Pierre, D. A. (1986). Opdimization theory with
applications. Dover Publications, Inc., New York.

Ruipérez, . {1977). Sobre ciertos aspectos algoritmicos
de lu programacién dindimica. Degree Dissertation.
Universidad de Madrid, Facultad de Ciencias
Fisicas. (In Spanish)

1726



