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Abstract: This paper deals with the development and characterization of Dynamic 
Programming Predictive Controllers (DPPC), advanced predictive controllers that make 
use of dynamic programming to solve highly nonlinear I nonquadratic constrained control 
problems. Some computational techniques to reduce the computational load are proposed, 
and an application example, pH control, is analyzed using this new methodology_ 
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I. INTRODUCTION 

Model Predictive Control (MPC) was developed during 
the late 70's. Sinee then, it has increased its popularity 
due to the important advantages Ihat offers over other 
control methods (Dc Keyser, 1992). 

From a mathematical point of view, MPC is not but a 
constrained optimization problem that can be usually 
solved as a quadratic programming (QP) problem: when 
the process model is linear, the objective function is 
quadratic and the constraints arc linear. 

Dynamic Programming (DP), based on Bellman's 
Principle of Optimality (Bellrnan. 1957), is a very general 
optimization tool, more powerful than QP. Making use of 
OP, it is possible to develop new types of predictive 
controllers with more general and highly nonlinear 
models and constmins, and nOllquadralh.: objective 
functions (the latter is important, as Chow , et al. (1995) 

have shown that the use of multiple models in predictive 
control leads to a cost function lbat is not quadratic). 

The main aim of this paper IS to introduce a predictive 
controller based on DP. In section 2 predictive eontrol1ers 
are introduced. paying special attention to their 
fonnutation as constrained optimization problems. 
Section 3 deals with dynamic programming, The main 
drawback of DP is its extremely high computational 
complex.ity; so, section 4 stud~es some important methods 
for the reduction of the complexity. In section 5 the 
predictive controller hast!d On dynamic programming is 
developed. Finally, in section 6 a highly non linear control 
prohlem is solved: (he pH conlrol. 

2. MODEL PREDICTIVE CONTROL 

All predictive controllers share a common key 
charactedstic: they make use ()f a model of the process to 
obtain the control signal by minimizing a give'J cost 
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function. The MPC-methodo1ogy is delined by the 
following strategy (C1arke, el al., 1987; De Keyser, 1992; 
Camacho and Bord6ns, 1995): the optimal future control 
signal. flu· , is obtained in such a way it minimizes a 
gi ven cost function of the predicted future errors, 
[r(t+klt) -y(t+klt)J, o"cr a long time prediction horizon N,: 

J( 8t,(llt ), .... Au(1 + Nu - II1 ),t) = 

= {~,y(jXr(t + j[t)- Y(I+ jlt)]' + 

+~AqAu(I+j - lIIW } (I) 

subject to i\,u(t+j- Ilr) =0, Nu+l $j $N" where EO 
slands for expected value. as predictions are made based 
on the infonnation available at the instant t . y(t+klt) , 
k = I. 2, .'. N2, are the predicted outputs of the process, 
based on the process model. r(t+klt) is a reference 
trajectory , describing how the current process output, Y(I), 
should tend to the -predicted-- future setpoint, w(t+klt). 

The first element oflhe optimal control vector, Au·(tlt), is 
actually applied to the process . At the next sampling 
instant a new output measurement y(HI) is obtained, 
which is generally diITerent to the predicted valuey(t+III). 
Therefore all the olhcr elements of u' are forgotten, all 
the sequences are shifted and the whole procedure is 
repeated. This is called a receding horizon strategy. 

In the absence of constraints. it is pos.~ible to obtain the 
solution of the minimization problem in closed form. But 
inequalilY constninls appear in real control problems and 
the solUlion has 10 be obtained numerically. 

Most predictive controllers are based on linear mooels 
(including the dynamics of the disturbances), quadratic 
cost functions and linear constraints. In this case, the 
optimi zalion problem has the general expression 

x· = argmin (~XTHx +GT x) 
subject to A~::; b (2) 

where x is the mampulated variable (u or Au), x· is the 
optimal solution, H is the Hessian matrix and G is the 
gradient vector. Thi s problem is known as quadratic 
programming, for which there ex ists a deep theoretical 
and pracl ical background. 

Whenever the models are nonlinear (a more realistic 
situation), the cost function is non-quadratic, or the 
constraints are nonlinear, the optimization cannot be 
solved as a quadratic programming problem, [t does not 
exist a general theory for such nonlinear I non-quadratic 
predictive controllers. For them, ad hoc numerical 
methods have 10 be used, or the problem has to be 
linearized. 

3. DYNAMIC PROGRAMMING 

3. J. Backward Dynamic Programming 

Dynamic Programming (DP) is an analytic tool created to 
solve a set of optimization problems known as multistage 
decision p rucesse!:i , One of the most important ones is as 
follow s (LalSon and Casti, 1978): 

Minim;ze (maximiz.e) the separable cost (peiformance) 
fun ction 

N 

J = I.L(x(k),u(k ),k) 
1:=0 (3) 

where 

x(k + I) = g(x(k),u(k),k ) (4) 

subject to 

xeX(k)c91", ueU(x(k),k)c91 m 
(S) 

000 

In this problem, x is the slate variable , u is the decision 
or control variable and k is the !ltage . 

Delining : 

(6) 

and based on Bellman's PrinCIple of Optimality (Bellm.n, 
1957; Larson and Casti, 1978), it is possible to prove that: 

I(x ,k) = min{ L(x,u,') + ~g(x, u , k),k + IJ} 
• 

[(x ,N) = min{L(x,u( N),N)} 
u(N) (7) 
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Fig. I. BDP computational procedure 

k 

This iterative functional equation can be solved 
numerically. To do so, the sets of admissible states, X, 
and decisions, U. have (0 be quantified to a finite number 
of values 

X -{ " MX} - X , x •... , x 

U -{ I 2 MU} - U ,U t- •• , Il (8) 

defining a computational grid; M x and Mu can be 
different at each stage k. For all !he stages k, and for all 
the quantified states xi(k), the quantity inside the braces in 
(7) is evaluated for each U E U, and these values arc 
compared to detemlinc the smallest one (fig. I). The 
<.:onlrol u that produces the smallest cost is the optimum 
control u· for x(k) at stage k. [n order to evaluate 

[[g(x, u, k) , k+ll, when g(x, U, k) is not a quantified state, 
an interpolation algorilhm can be used. Starting at stage 
N, this procedure is applied backwardly, towards stage I. 
Thus. this method is called Backward Dynamic 
Programming (BDP). 

One of the most important properties of this method is 
that constraints of a very general nature can be handled. 
and they actually n~duce the computational effort rather 
than increa"e il , as they reduce the numhcr of admissible 
controls and states to be evaluated. 

BDP always uelennines an absolute minimum, within the 
accuracy of the computational grid. The optimal initial 

and final states are determined by BDP, if !hey arc not 
defined in advance. 

The main drawback of this method is a very high 
compUlational complexity: although the constraints 
actually reduce the number of trajectories that must be 
considered, the number of computations is still too high. 
Furthermore, it can be proved (Guignabodet, 1961, 1963) 
that (he only way to obtain an accurate solution is to 
increase the number of quanlilied controls and states, not 
just arbitrarily increase the order of the interpolation 
procedure. 

3.2. Forward Dynamic Programming 

It is possihle to obtain a differ~nt functional equation that 
can be solved forwardly. The minimum cost function I' 
(Larson and Ca:;ti, 1978) is defined as 

r(x,k)= min IL{x(j),u(j),i) j '-I } 

.(oj .• (I)p(,-I) . 0 
F 

Then, the iterative functional equation becomes: 

r(x,k) = ~n{ r.( g -I(x,u,k -I),u,k - I] + 

+ 1'[ g- I(x,u ,k -I),k -I]} 

where g[g"[x(k+I), u(k), kl, u(k), kl =x(k+\), 

(9) 

( 10) 

This method, called forward dynamic programming 
(FDP), has the same properties and computational 
complexity that BDP, and is specially useful when the 
initial state is defined in advance. 

4. REDUCTION OF D1MENSIONALITY 

In order to obtain an accurale solution , the step of the 
computational grid has to be small, but then the 
computational complexity of dynamic programming is 
extremely high . There exist :o;ome methods to reduce it , 
making possible to apply dynamic programming to some 
interesting problems of the real world. 

4. J. Special partitions 

Nonunifdrm partitions. The step size is smaller in those 
regions of the state space and/or the control space where 
more precision is needed (Moreno, et aI., 1992; Moreno, 
el al. , 1994; P. de Madrid , , 'I al., 1994; P. de Madrid, 
1995). 
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Coarse partitions. A coarse partition of the sLatt:: space is 
initially used (Bellman and Dreyfus, 1962; P. de Madrid, 
1995). Once the solution has been obtained, it is detined a 
band around it, where a new smaller partilion is defined. 
Then a new DP problem is solved in this hand, and all the 
procedure is repeated until the desired grid size is 
reached. The main drawback of this method is that a local 
optimum can be obtained if the initial grid is too coarse. 

4.2. Nominal trajectories 

If a good nominal initial solution is available, it can re 
used in two different ways 1.0 reduct:: the computational 
complexity: 

Direct iteration. If the initial stale Xo is defined, a 
nominal solution. starting from x{P is postulated. The DP 
problem is only solved in a hand around the postulated 
solution. This method can he combined with the coarse 
partitions method. 

Successive appmximation!i in the stare space. Let 
consider a problem with as many slate variables as control 
variables (11 = m) (Bellman and Dreyfus, 1962; Larson, 
1968; Korsak and Larson, 1970; Larson and Korsak, 
1970; Coopcr and Cooper, 1981; La"on and Casti, 1982). 

Let {x'"'(k)} be the nominal solution. One of the n state 
variables is selected .. XiI' and a DP prohlem is solved, in 

such a way that (x/OI(k), i '" i,} does not change. It means 
that there exiSl (It - I) equality conslraints in the control 
variables , and therefore the problem has only one degree 
or freedom. The solution of this problem generates a new 

nominal trajectory, r x (ll(k)). Then a new state variable is 
selected, Xi2' and the method is repealed. This is done for 
all the n state variables. Then tht:: method is repeated, 
until it converges to the same solution for all the state 
variables. 

This method reduces the cumplexity to linear, and can be 
generalized for the general case (11 ::J:. m). But convergence 
to the true optimum (even to a local one) can be only 
guaranteed for a few cases. 

4.3. System dynamics 

Convexity of the sel nf admissible cOlllrois. If the system 
equations are linear and the set of admissible slales for 
each stage is convex, then the set of admissible controls 
for each state for each stage is convex (Ruiperez, 1977; P. 
de Madrid, 1995). This can be used (0 reduce the number 
of admissihle controls to lest: if u· and u2 are the 
minimum and maximum admissible controls, 
respectively, and the system equations are linear, then the 

. • . I • 1 
oplHnal control u must vcnf)" u :=; u :=; U , and thus the 
number of quantified control'\ to lest for each state is 
reduced. 

Limit trajectories and reachable states. If the initial state 
x(O) is defined, it is possible to bound a region in the state 
space by means of the limit trajectories: those state space 
trajectories obtained applying the extreme controls to the 
system equations. The only states to explore, the 
reachable states, are confined in the region defined by 
these tr~jectories (Donnido, el al., 1970). If the tinal state 
x(N) is defined, this region can be reduced even more. 

5. DYNAMIC PROGRAMMING PREDICTIVE 
CON1ROL 

The application of DP to process control is not a new 
subjecl. In fact, some optimum control problems can be 
expressed in terms of a Bellman's equation, that can re 
solved analytically when the system is linear, the 
objective function is linear nr quadratic , the stochastic 
variables are Gaussian and there are no constraints 
(Larson and Casti , 1982; Pierre, 1986; Mosca, 1995). But 
most prohlems can be only sol'Ied numerically. 

Current :MPCs make use of linear systems and constraints 
and quadratic cost function s, due to the limitations of QP 
algorithms. But QP can he considered a subset of DP 
problems. So, it is possibk to develop a predictive 
controller based on DP. 

P. de Madrid (1995) proposes a general DPPC algorithm. 
This is a hybrid one --<:ombining BDP and FDP- with 
no interpolation, optirnized for MPC. It makes use of the 
techniques described in section 4, in such a way the 
computational cost is dramatically reduced, and can be 
easily generalized to include illterpolation . 

6. APPUCATION EXAMPLE: pH CON1ROL 

pH control presents difficulties due to large variations in 
process dynamics. pH is a measure of hydrogen ions W" in 

a solution, and is defined b:l pH = -log[W], where [.] 
stands for concentration. Let consider the neutralization 
of a strong acid-base pair. a'> it is proposed in (Astrom 
and Witlenmark, 1989). A strong acid effluent is red to a 
tank wilh volume V (I); the acid concentration in the 
influent stream is CA (molll) and its flow is q (lis). The 
acid is neutralized with a strong base of concentration cR 
(molll) and now " (l/s). Let x. and x. be the 
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Fig. 2. Titration curvc for (12) 

concentrations of acid and base in the tank. The system 
dynamics is then given by 

j
dxA =!L(c -.< ) 
dl V ., A 

d .ltJ U q 
--=-c --'( 

dt V· V ' · (11) 

and the pH is given hy 

(12) 

where x = x. - x, and Kw = 10-14 (molll)' at 25'C. 

The dynamics of the pH sensor and the pump will be 
mode led as first order transfer functions with time 
constant 'to 

Astrom and Wittcnmark (1989) show that, assuming 
proportional control. (he critical gain varies drastically -

PH'~LV-V~=-~ , : 1 
o 2:3 4 5 6 7 B 9 10 

t (see) 

",,'tt q,f= ' . ' ----:----!-. . _ 

02 3 4568 
t (!I9C) 

1 
9 10 

Fig. 3. PI performance: pH control (top) and concentration 
control (bottom)_ pH"'f is 8 (a), 9 (b) and 10 (c) 
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Fig. 4. DPPC performance. pH",r is 8 (a), 9 (b) and 10 (c) 

several orders of magnitude, see fig. 2- for different 
values of the reference pH. The difficulties are 
compounded by the presence of time delays and flow 
variations . 

Figure 3 (top) shows this situation: assuming V = 1000 I, 
q = 1000 lis , CA = Hr4 molll, '8 = I moUl, t = 0.1 s and a 
sampling period of T = 0.03 i, a PI (or PID) controller 
that has been tuned for a given setpoint (lO) has a 
degraded performance for a di ITerent one, and can become 
unstable. Equation (11) shows that the system depends 
linearly on the concentrations. so perfonnance is better if 
concentration is controlled instead of pH. In this case (fig. 
3, bottom), the same PI can control the three different 
,etpoints. but the system response degrades quickly. 

DPPCs can handle this situation in a natural way. Figure 
4 shows the DPPC perfonnam:e under the same operation 
conditions assumed in fig. 3, 'VII Nu. N2 and A. have been 
set to I, I, 10 and 0, respectively, with a control grid of 
0.0025 and lI~x = 0.3 moUI . ' Ille control signal has been 
filtered to eliminate the pOSSible oscillations induced by 
the quantified values of rhe variables. The main 
advantages are: 

• The system has not to be Iinearized. The real system 
dynamics is taken into account, as a nonlinear model 
is considered. 

• DPPC can control several setpoints with a single 
tuning. For all of them the system output is good and 
stable, and much faster than the PI response. 
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7. CONCLUSION 

This paper has introduced DPPCs, advanced predictive 
controllers that make use of dynamic programming to 
solve highly nonlinear I nonquadratic constrained control 
problems. Computational techniques have been proposed 
(0 reduce the computational load. Nowadays. real time 
applications are only available for slow processes, with 
sampling periods between several seconds to several 
minutes (typical industrial processes). Future 
computational advances (faster computers, 
multiprocessors and parallel algorithms) will make new 
applications come true . 

The application example, pH control , has shown how il is 
possible to work with the exact nonHnear equations. As 
the nonlinear model takes into account all the complex 
system dynamics, the performance of the DPPC controller 
is much better. 
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